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Outline

= Why interactive retrieval and mining?

m Active semi-supervised clustering

m Relevance feedback with global or local features
m Scalability issues for relevance feedback

= Scalable video mining by copy detection

= Interactive retrieval after prior mining

= Information retrieval beyond ranking
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Why interactive retrieval/mining

m Define/find task-dependent or user-dependent
complex visual concepts/patterns

= Available information

1. Data-issued similarities (visual, spatial relations...)
= Inherent to the data!

2. User-provided valuable information
= Class labels, pairwise constraints, ...
= Typically approximate and/or uncertain
= Typically scarce and expensive

— Combine these information sources!
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Active semi-supervised clustering

m  Supervision (information regarding the target: class labels,
constraints, ...) is only available for (a small) part of the data, while
data-issued similarities are available for all the data

— semi-supervised learning

= High cost of
« Acquiring supervision (requires interaction with the user)
+ Using the data (algorithmic complexity)
— active learning: the algorithm selects the data for which supervision
information is required from the user
— Maximal performance improvement at minimal cost
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Case: similarities + constraints

m Application context (image database categorization)
« Large unknown (or little known) database
« Direct clustering has poor performance
— Supervision is needed
+ Image classes are unknown a priori

— Users cannot provide class label but
can say whether 2 images should be
in a same class (must-link constraint)
or in different classes (cannot-link
constraint)

— Given the size of the database,
the amount of supervision should

be minimal must-link cannot-link
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Active clustering with constraints

= Semi-supervized aspect 0 o
. . . o]

¢ Combine two sources of information: o o 4

1. Similarities between image descriptors \3 o o
o

2. Pairwise constraints o
— New objective function (based on CA) e o°
m Active aspect
¢ Minimize number of needed constraints <
maximize information transfer user — system
— 2 complementary selection criteria:

1. Informative constraints: ambiguous images
from the least well defined clusters

2. Low redundancy between the constraints

[GCBOS]
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Illustrative results

= Arabidopsis thaliana database
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Class 7: 20 plants  Class 8: 10 plants

Images provided by NASC (http://arabidopsis.info), ground truth by INRA (http://www.inra.fr)
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Retrieval with relevance feedback
1. Query by example - -
2. lterative interactive retrieval with relevance feedback
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Active learning for RF

= System must select unlabeled sample so as to maximize the
transfer of information from the user to the system

— Ambiguousness . ‘ . '

Before selection After selection, feedback,
estimation

— Low redundancy . ‘ . ‘

Before selection After selection, feedback,
estimation
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lllustrative example 1

Goal: find portraits

Base of 7500 images,
including 110 portraits

Available description:
global (colour, texture,
shape)

First page after 4
iterations

23/09/2010 M. Crucianu
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lllustrative example 2

Goal: find regions
representing villages

Base of 24000 regions,
87 belong to the class

Available description:
region features (colour,
texture, shapes inside)

First page after 6
positive examples and
28 negative

—_—

[FCB04/2]
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= Two stages

= Many proposals for scaling retrieval by similarity (query by

= An example: M-tree (metric search tree)

Does relevance feedback scale?

1. Learning: typically very few examples, can be fast if a fast learner is
employed (e.g. SVM); still, is expensive with transductive learning!

2. Selection of unlabeled sample the user should label: if all the
unlabeled items in the database are evaluated, complexity O(N)!

example), most of them fail when distance distribution is narrow

Subtree N(o, ) : objects o such that d(o,0, )<,
Query g of range s

If d(q,on)> r, +s then the entire subtree N(on)
can be rejected (from triangular inequality)

23/09/2010
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FSM-tree and hyperplane queries

= What about relevance feedback?
= Principle of the method in [CEOTO8]:
+ Classification with a 2-class SVM
+ Build an M-tree in the feature space of the kernel (FSM-tree)

+ Return the images that are closest to the boundary, found by a knn
query in the FSM-tree with a hyperplane

FSM-tree

23/09/2010 M. Crucianu 13

FSM-tree and hyperplane queries

‘ziai yi K(OE,XI)-J-b‘
\/zi'jaiaj v, ¥ K(x,x;)
(f(0,)=Y Y, K(o,.x)+b being the decision function of the SVM)

m  Pruning principle (test to reject a subtree): 3
o If d(Q,0,)>r, +s then the node is not )

retained for subsequent exploration
Q
= How to avoid even more distance computations:
0
0 +<# Q L\Loe
n e Q

d(Q.0,)+d(0,,0,)=d(Q,0,) but d(Q,0,)+d(Q,0,)%d(o,,0,)
= d(Q,Oe)Zd(Q,On)—d(Oe,On) ( d(Qvoe)l‘d(QlOn)_d(oe'on)‘ )1 SO
if d(Q,0,)—d(0,,0,)>r,+s then d(Q,0,)>r, +s

23/09/2010 M. Crucianu 14 m

= Distance to the hyperplane: d(Q,o,)=
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RF with local features

m Application context: assisted plant species identification
+ Relevant information only concerns a part of the image

« Additional difficulties:
m Strong background variations

All plant images are provided by INRA

23/09/2010 M. Crucianu 15 W INRIA

RF with local features

— Use of local features (LF) with appropriate invariance and
robustness characteristics

m User selects an image region to label as “relevant” or “irrelevant”
= Which part should the system consider in unlabeled images?

= Which unlabeled images should be considered? (all: too slow!)
— Add implicit feature selection to the user-provided selection

User target (left) and two candidate images with LF belonging to the
target (green, middle) or not (red, right); the other LF (blue) are ignored

23/09/2010 M. Crucianu 16 W INRIA
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Retrieval performance

= Comparison between two types of local features and global
features (context can play a significant role for some databases...)

at R=P

MAP

23/09/2010
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Localization performance

= Implicit object localization (by LF similarity) is close to
explicit localization (prior segmentation)
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Images from Oxford
Flower 17 database
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Scalable RF with local features

m Kernel approximation by hashing /4(x.¥) ~ k(x.¥)

-1

k(. ¥) = (). 0¥} o= E}...(} 0.0 ... 0. .0a, (1...(1]""
a1

L —
halx)=s . s

F3

(] <2
= Hashing and active learning
h(x) = Za;gjhtx.vj) -3

=1

= E a1 {on(x), an(v;)) — 3

=1

= <m~a(x}- Zﬂfy;t'}kivﬂ> -8
=1
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Video mining by copy detection

m  Goal: scalable content-based video copy detection for video
stream surveillance and mining of large video databases

= “Copy” = transformed version of original content (photometric,
geometric, temporal changes, post-production...)

M. Crucianu 20 m
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Video mining by copy detection

ool

[ |

Source: DailyMotion Source: DailyMotion
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Video mining by copy detection

= Large content archive (e.g. Institut
National de I'’Audiovisuel) context

Segmentation, labelling

Aided annotation

Media impact analysis

Media offer analysis

* 6 o o

= Video sharing web site context
+ Cleanup (remove/reduce redundancy)

« Organize: select representatives, identify
characteristics

+ Mutualisation/filtering of keywords
+ New tools for navigation/visualisation

23/09/2010 M. Crucianu
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Description for copy detection

= Global description?
+ Not robust to expected transformations

-
— Local description

+ SIFT, PCA-SIFT, GLOH, SURF?

= Too robust to changes in scale,
viewpoint...

= Expensive (extraction, retrieval)
— Improved Harris detector with differential
descriptor

= Robust to changes in contract, limited
robustness to changes in scale

= Quite light (dimension = 20)

23/09/2010 M. Crucianu

Scalable mining by copy detection

= Preliminary work: stream surveillance

« Z-grid, models of distortions and of the local density of signatures

— Deferred real-time surveillance of one video stream against a
database of 280 000 hours with 1 PC, detection rate ~95% for video

fragments of more than 5 seconds

= Mining by copy detection = similarity self-join on the video
database — complexity O(N?) (without an index)

= Alternative solutions:

1. Direct use of the stream surveillance method (sequential reading the
database, search of each keyframe in the database)

2. Direct mining:

= Similarity-based segmentation (redundant segments!) of the database

= Similarity self-join within each segment

23/09/2010 M. Crucianu
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Scalable mining by copy detection

= Quantization of the description space in cells, each hash bucket is
defined by a triple of cells [PCS09]

= Triples of points defined by
knn in the image (— local)

Bucket
m Basic geometric information sorted by p
d(q, 1% nn)
p =
d(g, 2™ nn
23/09/2010 M. Crucianu

Examples of detections

Transformed

Original
Ccop 9

[PCS09] ,5

Illustrative results

= Web2.0 data (from YouTube)

strong degradation of image quality

¢ Performance

change in scale, translation, inlays

b il L BT

scrolling text, change in intensity

inlays, change in sharpness

— Quiality: recall 0.8-0.85 at précision 0.95-0.96 (base CIVR 2007)
— Cost: 10 000 hours of video in ~3.3 days; 63 hours in 42 seconds
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Interactive retrieval after mining

m Complex concepts — very large search space
+ Learning: requires too much training data
« Difficult to strongly reduce computational complexity of search

= Strong assumption: meaningful retrieval results rely on
elementary regularities that can be found a priori

= Example for plant identification:
« ldentify complex patterns that are redundant in the database

=

+ Can be done with methods related to copy detection!

23/09/2010 M. Crucianu 27 m

IR beyond ranking

= What is informative in the
results of search?
+ Potentially several
meaningful views, each with |.=
a specific grouping
¢ What about ranked
answers?
= Mixture of many different
dimensions of similarity
= Individual answers rather
than relevant clusters

= Ranking leads to a loss of
information

23/09/2010 M. Crucianu 28
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Complementary clusterings [PC10]

m  Complementary clusterings for a set of vectors, each clustering in
a specific, arbitrarily oriented subspace

m  Complementarity: one clustering provides little or no information
regarding the other(s)

Original feature space Transformed feature space

‘T;’,«;"@“‘C

Color

Type

m  Method: inspired by Tree-Component Analysis, but mutual
information is computed between clusters in different subspaces

23/09/2010 M. Crucianu 29

Illustrative results

Data:

21 object classes,
72 viewpoints/class
Global descriptions =

different color
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Conclusion

Interactive retrieval/mining can allow to define/find task-dependent

or user-dependent complex visual concepts/patterns
= Difficult but possible to scale such methods to large databases
m Search should provide more informative answers to user queries

= Prior mining allows to improve subsequent interactive retrieval

(quality, speed, information content...)

i 23/09/2010 M. Crucianu 31 m
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