Functional properties of multifunctional nanoobjects **Catalin Harnagea** INRS - Énergie Matériaux et Télécommunications (Varennes, QC) 2010-Sep-22

Centre - Énergie Matériaux Télécommunications

erroïc LAB

erroîc LAB

INRS, Varennes

Multiferroic composites

O. Gautreau et al, J Mater Mafn Magn. 321, 1799 (2009)

Semiconductor nanowires

S. Barth et al, Nanotechnology 20, 115705 (2009)

Biological materials

C. Harnagea, M Vallieres, et al, Biophysical J, 98, 3070 (2010)

Multiferroic materials

Multiferroic: material exhibiting two or more order parameters: (Anti-)Ferro(Ferri-)magnetism, (Anti-)Ferroelectricity, (Anti-)Ferroelasticity

Example of coupling: Magnetoelectric effect ME

- **D** Polarization controlled by magnetic field : $P=\alpha H$
- $\square Magnetization controlled by electric field: M=\alpha E$

Color bol

niversité d'avant-garde

Énerg

erroic LAB

N. A. Spaldin and M. Fiebig Science **309** (2005) 391

ME M-control device

ME capacitive write head

Multiferroic bismuth ferrite BiFeO₃ (BFO)

erroic

C. Ederer & N. A. Spaldin Phys. Rev. B **71** (2005) 60401

R. Ramesh presentation oct. 2004

F. Bai et al. Appl. Phys. Lett. **86** (2005) 032511

Bulk crystal structure

Charles Construction about [111], Fe & Bi displacement along [111] (ferroelectricity)
 R3c, a = 3.962 Å, α = 89.40°

Electrical & magnetic ordering T > 300K

 $\label{eq:relation} \Box \quad T_{N} \sim 643 \text{K}, \text{ Canted, circular cycloidal G-type AFM order,} \\ & \text{weak FM, } M_{s} = 8-10 \text{ emu/cc} \\ \Box \quad T_{C} \sim 1103 \text{K}, \text{ Polarization // [111]} \\ P_{s} = 6 \ \mu\text{C/cm}^{2} \text{ for bulk, } 1-100 \ \mu\text{C/cm}^{2} \text{ for thin films} \\ \end{array}$

versité d'avant-garde

Magnetic properties

High M_s at reduced thickness due to epitaxial strain?

OR

fatigue

Secondary magnetic phase contribution
 (γ-Fe₂O₃, FO)?

Resolved! Presence of small quantities of γ -Fe2O3 demonstrated by Bea et al

- 90nm 60 120nm 40 20 0 -20 -40 -60 -80 А 2000 -10000 10000 -20000 0 Magnetic field (Oe)

80

Magnetization (emu/cc)

- 30nm

J. Wang et al. Science **307**, (2005) 1203b

Pulsed laser deposition (PLD)

Pulsed laser deposition (PLD) is one of the most suitable and frequently used techniques to grow heterostructures of multi-component complex oxides - among which perovskites - in moderate oxygen pressure.

Deposition parameters Laser: KrF, λ = 248nm, impulsion: 15 ns Targets: SrRuO₃ (SRO), BiFeO₃ (BFO), Bi_{3 25}La_{0 75}Ti₃O₁₂ (BLT) Substrate: (111)-oriented SrTiO₃ (STO) Laser intensity: 2 J/cm² Target-substrate distance: 5 cm

Layer	T _{substrate} (°C)	P _{oxygen} (mTorr)	Frequency (Hz)	Thickness (nm)
SRO	600 - 800	100	5	15 - 300
BLT	600 - 800	300	7	30 - 250
BFO	600 - 800	8 - 20	10	100 - 200

γ-Fe₂O₃ development in epitaxial BiFeO₃/Bi_{3.25}La_{0.75}Ti₃O₁₂ bi-layers

γ -Fe₂O₃ is stabilized by 3D epitaxial strain [i] even in thermodynamic conditions for which α - Fe₂O₃ is expected to nucleate, grow [ii], and to be stable i.e. for particle size above 15nm [iii]

BFO on SRO/STO @high T & low P BFO grows on smooth SRO layer and with low lattice mismatch \rightarrow low amount of grain boundaries \equiv low density of nucleation sites for FO and \rightarrow growth of large, relaxed grains of α -Fe₂O₃

□ BFO on BLT/SRO/STO(111)

BFO grows on a rough surface [Complex epitaxial growth mode of BLT(104)/STO(111)] and with higher lattice mismatch

 \rightarrow numerous grain boundaries = higher density of nucleation sites (nanograins)

 $\Box \rightarrow 3D$ epitaxial strain stabilizes γ -Fe₂O₃

i. M. T. Johnson et al. 1999 Phil. Mag. A 79 (1999) 2887
ii. Y. J. Kim, Y. Gao & S. A. Chambers. Surf. Sci. 371 (1997) 358
iii. O. Bomatí-Miguel et al. Chem. Mater. 20 (2008) 591

Self-assembled γFe_2O_3 -BiFeO₃ nano-composite in BFO-FO/BLT bi-layers

Ti

Fe

Bi

Ĵ

BFO - γ-FO layer BLT layer SRO electrode Substrate

Phases location identification

O. Gautreau et al. J. Phys. D: Appl. Phys. 41 (2008) 112002

Maghemite signature

INRS

avant-garde

(γ -FO inclusions' height/width aspect ratio \approx 1.6)

Film composition \approx 74% BiFeO₃ & 26% γ -Fe₂O₃

O. Gautreau et al. J. Magn. Magn. Mater. (2009) doi:10.1016/j.jmmm.2009.02.009

Well-defined interfaces

Development of γ -FO at BFO grain boundaries while BFO relaxes $_{)}$ \rightarrow self-assembled γ Fe₂O₃-BiFeO₃ 3-D hetero-epitaxial nano-composite

High resistivity & dielectric constant → PE loops from ferroelectric polarization switching

11

BFO-FO/BLT versus BLT/BFO-FO

500 nm

BLT layer

SRO electrode

Substrate

BFO - γ-FO layer

 \rightarrow P_r reduction & imprint effect

50-30

BFO-FO(/BLT)

□ Clear hysteresis characteristic M-H loop → Ferro(Ferri-)magnetism
 □ Enhanced Saturation Magnetization

O. Gautreau et al. J. Phys. D: Appl. Phys. 41 (2008) 112002

Observation and localisation of Ferromagnetism at the nanoscale

MFM images

ME coupling (fixed magnetic state induced by poling)

MFM image while applying a 2860 Oe magnetic field

MFM image after applying a 2860 Oe magnetic field (opposite direction)

O. Gautreau et al. J. Magn. Magn. Mater. (2009) doi:10.1016/j.jmmm.2009.02.009

Semiconductor nanowires: SnO₂

S. Barth et al, Nanotechnology 20, 115705 (2009)

Semiconductor nanowires: SnO₂

SnO₂ nanowires: Young modulus

Electromechanical phenomena play an important role in the accomplishment of the biological functions in organic structures.

Collagen, the most abundant protein in mammals, is particularly important because it gives strength to the connective tissue.

Objective:

Understanding the relationships between the material properties and the biomechanical functions of tissues

Université d'avant-garde

Biological materials

Collagen type I

erroîc

INRS

OIO

Iniversité d'avant-garde

-0.2

-0.4

-0.6

E. Fukada, Biorheology 5, 199 (1968). 100 A. Gruverman, B. Rodriguez, S.V. Kalinin, Springer (2007)

In a bundle of parallel fibers, the polar axis - directed along the fiber longitudinal axis - can be oriented in opposite directions (anti-parallel geometry).

INRS

Université d'avant-garde

The fibers are usually grouped in "polar domains" having a dimension of 8 few fiber diameters.

M. Minary-Jolandan and M.-F. Yu, Nanotechnol. 20, 085706 (2009)

Collagen exhibits longitudinal piezoresponse perpendicular to the axis !

 d_{11} and $d_{22} \neq 0$?

ò X-range: 2 µm

erroic LAL

Comparison of orientations: fiber and PFM vector

Orientation of fiber

Orientation of PFM vector

 $\arctan\left(\frac{zPFM}{xPFM}\right)$

(normalized signals)

INRS

Frequency dependence

erroic

LAB

Signal transduction: friction (for BOTH xPFM and z-PFM)

Lateral signal "low-pass filtered" by the control and acquisition electronics !

Enhancement at contact resonance

Electromechanical response time of collagen is below 5 µs!

• The electromechanical response time of collagen is below 5 µs.

erroîc

Collaborators:

versité d'avant-garde

Dr. M. Alexe, Dr. L Pintilie,

Max Planck Institute of Microstructure Physics, Halle, Germany National Institute of Materials Physics, Bucuresti-Magurele, Romania

Prof. Gianluigi A. Botton

Dept of Materials Science and Engineering Brockhouse Institute for Materials Research, McMaster University

Prof. David Ménard

Départment de Génie Physique, École Polytechnique de Montréal Dr. Teodor Veres CNRC-IMI, Conseil de la Recherche du Canada, Institut des Matériaux Industriels Boucherville, Canada

> Prof. B. R. Olsen, Harvard School of Dental Medicine, Boston, MA

Acknowledgements

INRS starting funds NanoQuébec NSERC FQRNT

Thank you for your attention !