PROGRESS IN PHOTOVOLTAIC CELLS BASED ON ORGANIC THIN FILMS&ORGANIC/INORGANIC HYBRID STRUCTURES

S. ANTOHE,

University of Bucharest, Faculty of Physics,

Research and Development Centre for Materials and Electronic and Optoelectronic Devices,

P.O. Box MG-11, Magurele, Ilfov, 077125, ROMANIA,

E-mail: santohe@solid.fizica.unibuc.ro

Telefon: +40214574535/4574419, fax: +40214574418/4574521

University of Bucharest – Faculty of Physics MEOD Research Center

Outline

Motivation

- Organic semiconductors good light absorbers, produced from non-toxic precursors, by very chep thin film technologies
- Hybrid inorganic/organic structures a route towards efficient and low-cost photovoltaic cells
 - Problem: excitonic absorption mechanisms charge extraction?
 - Layered structures;

Structures engineered at sub-micron or nanoscale

Conclusions

University of Bucharest – Faculty of Physics MEOD Research Center

Motivation

The Challenges *(The Terawatt Dilemma . . .)* Worldwide Energy Consumption (now to the future):

Primary Energy Projections in Terawatts

University of Bucharest – Faculty of Physics MEOD Research Center

Primary Energy Projections in Terawatts 50 40 Renewables Primary Energy (TW) Nuclear Coal 10 Oil Natural Gas 0 2050 1990 2000 2010 2020 2030 2040 2060 2070 2080 2090 2100 Year

University of Bucharest – Faculty of Physics MEOD Research Center

University of Bucharest – Faculty of Physics MEOD Research Center

Annual Coal Consumption by Country

University of Bucharest – Faculty of Physics MEOD Research Center

RENEWABLES

University of Bucharest – Faculty of Physics MEOD Research Center

How much solar will be part of the solution?

University of Bucharest – Faculty of Physics MEOD Research Center

SOLAR is real.... now and for our future

University of Bucharest – Faculty of Physics MEOD Research Center

Joint Research Centre - European Commission Renewable Energy Unit PV STATUS REPORT 2009, www.jrc.ec.europa.eu

University of Bucharest – Faculty of Physics MEOD Research Center

Study: Solar power is cheaper than nuclear

Solar and Nuclear Costs — The Historic Crossover

Solar Energy is Now the Better Buy

NC WARN

CONTENTS

Summary.	2
The Backdrop for Change	Ş
The Sun is Changing the Game	
Who Pays for New Nuclear?	2
Witnessing the Crossover	-
Jobs and Manufacturing - in North Carolina	į
Is the Public Ahead of the Utilities?	l
Financing Solar Equipment	1
What About Subscries?	1
Conclusion	ş
Notos	1
Appendix A: Methodology	1
Appendix B: Nuclear plant cost estimates	
and upward revisions per reactor	

Jefn 0. Blackdam, PID, Pelses Camilan of Documents and low on Chimoto, Delve University, D. Blackdam has controlled inserved in the compared for the compared in the control of the

Sam Canningham, Nestera of Ervision nertal Menagement cendidate, Dake Uriversity, Mr. Cunninghem's protessionel and academic interests and focused an policy applications of natural resource economics. He is an Economics and Environmental Studies graduate of Energy University.

NC WMRN Mater. Assessess & Reduction Network summaries taxes rougs of to bring the southering of tailspitel type and the second second

NC WARN. Waste Awareness & Beduction Network FD Rex 61061, Durham, NC 27/15, 1001 - 619 416, 5027 www.ncwam.org

NC WARN

SUMMARY

Solar photovoltaic system costs have fallen steadily for decades. They are projected to fall even farther over the next 10 years. Meanwhile, projected costs for construction of new nuclear plants have risen steadily over the last decade, and they continue to rise.

In the past year, the lines have crossed in North Carolina. Electricity from new solar installations is now cheaper than electricity from proposed new nuclear plants.

This new development has profound implications for North Carolina's energy and economic future. Each and every stateholder in North Carolina's energy sector — citizens, elected officials, solar power installers and manufacturers, and electric utilities — should recognize this watershed moment.

Solar-Nuclear Kilowatt-Hour Cost Comparison

Figure 1: The Historic Crossover - Solar photovoltaic costs are falling as new nuclear costs are rising."

The State Preface squares ter within is that on porties representing the solution out of portion of the space sisseem introduction of the USE 21 221 coals from horth combine interlines and a instand and strangenizations from 2010 to 2222. The incident throttline is it is in national projections made in the year allower and the senable of executival allowers-hear northill projects reach competion. See complete methodology in Hyperedick A.

THE HISTORIC CROSSOVER

University of Bucharest – Faculty of Physics MEOD Research Center

University of Bucharest – Faculty of Physics MEOD Research Center

1st Generation PV

University of Bucharest – Faculty of Physics MEOD Research Center

2nd Generation PV

University of Bucharest – Faculty of Physics MEOD Research Center

3rd Generation PV — Emerging PV: DSSC, Organic Cells, Plastic Cells

Konarka Power Plastic®

A new generation of solar technology.

Flexible film panels can be applied to virtually any surface — to create true energy independence. The window of opportunity is wide open.

Let's put the light to work.

University of Bucharest – Faculty of Physics MEOD Research Center

4th Generation PV–Hybrid Organic/Inorganic Structures

Multijunction Concentrators, Nanostructured thin films

Since 2002, photovoltaic production worldwide has been **doubling every two years**, making it the world's fastest-growing energy technology. However, the overall energy conversion efficiency of photovoltaics is still too low to be cost-competitive with fossil fuels, that is why new efforts must be done to increase the performances of solar cells and decrease their cost. For example the recent paper of Kui-Qing Peng, Shuit-Tong Lee, City University of Hong Kong, Journal of the American Chemical Society, 7 May, 2010 shows that

Si nanohole arrays Silicon nanohole solar cells aim to make photovoltaics cost –competitive. Under 1 sun AM1.5G illumination, a Si nanohole solar cell with p-n junctions via P diffusion exhibited an $U_{oc} = 566.6$ mV, a $J_{sc} = 32.2$ mA/cm², and a remarkable $\eta = 9.51$ %. The nanohole array geometry solar cells possesses : i) a robust structure compared with fragile free-standing nanowire geometry ,ii) a better ability for capturing sunlight than nanowire arrays, iii) the radial p-n junctions allowing for enhanced carrier collection.

University of Bucharest – Faculty of Physics MEOD Research Center

I - Photovoltaic Cells Based on Organic Monomeric and Polymeric Thin Films

University of Bucharest – Faculty of Physics MEOD Research Center

Mono-layer cells based on CuPc and TPyP

Dark current-voltage characteristics of a ITO/CuPc/Al cell, at room temperature The chemical structural formula of CuPc is shown in inset

- Transport parameters:
 - hole equilibrum concentration $\rho_0 = 2.3 \times 10^{13} \text{ cm}^{-3}$,
 - mobility $\mu_p = 1.1 \times 10^{-2} \text{ cm}^2/\text{Vs}$,
 - dark electrical conductivity $\sigma_p = 4x10^{-8} \Omega^{-1} \text{cm}^{-1}$ and
 - equilibrium Fermi level located at 0.455 eV above the valence band

Action spectrum of short - circuit photocurrent and absorption spectrum of the organic layers for the Schottky cells ITO/CuPc/AI

Typical cell parameters at illumination through ITO electrode with monochromatic light (λ = 620 nm and ~10⁵ photons/cm²s) are:

- open-circuit photovoltage U_{oc} = 0.675 V,
- short-circuit photocurrent I_{sc} = 8 nA, and
- fill factor ff = 0.35.

•
$$\eta_{\rm e} = 0.6 \times 10^{-2} \%$$
.

S. Antohe, <u>Journal of Optoelectronics and</u> Advanced Materials, 2, 498 (2000)

University of Bucharest – Faculty of Physics MEOD Research Center

Mono-layer cells based on CuPc and TPyP

Dark current - voltage characteristic of ITO/TPyP/AI cell

Schematic representation of energy bands at the ITO/TPyP(50 nm)/AI junction. Φ = 0.68 eV the barrier height at ITO/TPyP interface; wide of barrier w \in [193, 50] nm, when the temperature increases from 295 to 360 K

Action spectra and absorption spectrum of the ITO/TPyP/AI cell

Typical cell parameters at illumination through ITO electrode with monochromatic light of 32 μ W/cm² at λ = 440 nm:

•
$$U_{oc} = 0.175 V$$
 • ff = 0.13

S. Antohe, Phys. Stat. Sol. (a), 136 (1993) 401

University of Bucharest – Faculty of Physics MEOD Research Center

Two-Layer Organic Photovoltaic Cells

Cell configuration (inset) and dark current-voltage characteristics of ITO/CuPc/TPyP/AI

Current - voltage characteristics for a ITO/CuPc/TPyP/AI photovoltaic cell in the fourth quadrant, under illumination with monochromatic light of 20 μ W/cm² at 440 nm

- Typical cell parameters at illumination through ITO with 20 μ W/cm² at 440 nm:
 - U_{oc} = 400 mV
 - J_{sc} = 135 nA/cm²

1.0

ff = 0.44 and

S. Antohe and L. Tugulea, <u>phys. stat. sol. (a) 128,</u> <u>253 (1991)</u>

University of Bucharest – Faculty of Physics MEOD Research Center

(a) Action spectra of short - circuit photo-current for the p-n junction cell of ITO/CuPc/TPyP/AI. Curves (1) and (2) are obtained at illumination of the Al and ITO electrodes, respectively

> (1) $J_{ph \ 400 \ nm} = 0.845 \ nA/cm^2$ (2) $J_{ph \ 600 \ nm} = 223 \ nA/cm^2$.

(b) Optical absorption spectrum of the CuPc/TPyP two layer film.

Action spectrum of short - circuit photocurrent for the Schottky cells of: (a) ITO/CuPc/AI; (b) ITO/TPyP/AI, at illumination through the ITO electrode, and the absorption spectrum of the: a) CuPc; b) TPyP layer

> a) $J_{ph \ 600 \ nm} = 37.2 \ nA/cm^2$, b) $J_{ph \ 440 \ nm} = 28.8 \ nA/cm^2$.

S. Antohe and L. Tugulea, phys. stat. sol. (a) 128, 253 (1991)

University of Bucharest – Faculty of Physics MEOD Research Center

Dark Current - voltage characteristic of ITO/ChI a(200 nm)/TPyP (100nm)/AI cell at room temperature

Typical photovoltaic cell parameters under monocromatic light of 20 μ W/cm² at 470 nm:

- U_{oc} = 490 mV, J_{sc} = 13 nAcm⁻², ff = 0.34 and η = 1.1x10⁻²%
 ff = 0.34 is better than the values of 0.09 and 0.13 for
- ITO/Chla/Al and ITO/TPyP/Al Schottky cells, respectively.
- η is about 2-3 times higher than for ITO/Chla/Al cell.

University of Bucharest – Faculty of Physics MEOD Research Center

- (a) Absorption spectrum of ChI a/TPyP films, ChI a layer, and TPyP layer
- (b) Action spectra of cells illuminated through ITO: ITO/Chl aTPyP/AI (1), ITO/Chl a/AI (2), and ITO/TPyP/AI (3)

Three - Layered Photovoltaic Cell ITO/CuPc/(CuPc+TPyP)/TPyP/AI

Cell configuration (inset) and the dark currentvoltage characteristics of the ITO/CuPc /(CuPc+TPyP)/TPyP/AI cell at room temperature reciprocal forward current 1/I. The insert zooms on region A of high currents

S. Antohe, V. Ruxandra, L. Tugulea, V. Gheorghe and D. Ionascu, J. Phys. III France 6, 1133 (1996)

University of Bucharest – Faculty of Physics MEOD Research Center

Forward characteristic of the cell up to 1V can be fitted well by the modified Shockley equation:

$$I = I_0 \left\{ \exp\left[\frac{q(U - IR_s)}{nkT}\right] - 1 \right\} + \frac{U - IR_s}{R_{sh}}$$

 [A] Semi logarithmic plots of the forward-biased dark current: I-Y/R_{sh} vs
 Y. [B] Logarithmic plot of SCLC current vs voltage for high forward biases

S. Antohe, V. Ruxandra, L. Tugulea, V. Gheorghe and D. Ionascu, <u>J. Phys. III</u> <u>France 6, 1133 (1996)</u>

$$\frac{-IR_s}{R_{sh}}$$
 (1) The junction resistance R_0 is

$$R_0 = dU/dI = R_s + 1/\{\beta I_0 \exp[\beta(U - IR_s] + 1/R_{sh}\}$$
 (2)
when $\beta = q/nkT$

For higher forward bias, where Rs affects the curves, eq (1) can be approximated as I = I₀exp[(U-IR_s)], and since $1/R_{sh} < I$, eq (2) can be written as: $R_0 \cong R_s + 1/\beta I$ (3)

For low voltages, where Rsh acts, the approximation $\beta I_0 exp[(U-IR_s)] << 1/R_{sh}$ is valid, and eq. (2) becomes: $R_0 \approx R_s + R_{sh}$ (4)

From the extrapolated linear region [A], the determined value of R_s is 5.82 M Ω , the value of R_{sh} , obtained from region [B] being ~ 2 G Ω .

► To improve the linearity of In(I)-U plot, for determination of n and I_0 , we firstly removed the effect of R_s . This was achieved by making the following change in variable: $Y = U - IR_s$ (5)

- With this change, eq. (1) becomes: $I = I_0[exp(Y)-1]+Y/R_{sh}$ (6)
- For high forward biases, eq. (6) can be written as: $l \approx I_0 exp(\beta Y)$ (7)
- Plotting $ln(I-Y/R_{sh})$ vs. Y we remove the effect of the R_{sh} .

♦ from 0.3V to 0.1V and at higher The removal of R_{sh} and R_s has lead to the increase in the linearity of the curve at lower biases biases from 0.7 to 0.8 V, respectively.

The whole linear region of In(I)-U plot is extended in the range 0.1-0.8V.

• n and l_0 obtained from the slope and the intercept are 2.79 and 6.2x10^{-13A}, respectively and are more reliable than those obtained after the removal of R_s only.

For biases > 0.8 V, the current follows the relation $l \sim U^m$, where m = 7. this suggests that the dark current is a (SCLC) in the presence of exponentially distributed traps.

$$J_{SCLC} = N_{eff} \mu q^{1-\gamma} [\varepsilon \gamma / N_t (\gamma + 1)]^{\gamma} [(2\gamma + 1)/\gamma + 1]^{\gamma + 1} (U^{\gamma + 1}/d^{2\gamma + 1})$$
(8)

where = T_c/T , and T_c is a "characteristic temperature"

University of Bucharest – Faculty of Physics MEOD Research Center

b) Photovoltaic Properties

U(mV) 200 b) -300 J_{ph} (nA/cm²) -400 -500 λ = 520 nm -600 -700 -800 -900 [A] 100 U (mV) 100 200 300 400 500 [a] [b] -40 (nA/cm²) -600 -800 λ = 590 nm fa 1000 -120 [B]

Action spectra of the cells: [A] ITO/CuPc/(CuPc+TPyP)/TPyP/AI; [B] ITO/CuPc/TPyP/AI, illuminated through ITO electrode Photocurrent- photovoltage characteristics of the ITO/CuPc/(CuPc+TPyP)/TPyP/AI cell illuminated through ITO electrode with: [A] 520 nm wavelength of varying intensity as $(3 \ \mu \ W/cm^2 \ [a], 12 \ \mu \ W/cm^2 \ [b] and 30 \ \mu \ W/cm^2 \ [c]); [B] 590 nm wavelength of varying intensity as <math>(6 \ \mu \ W/cm^2 \ [a], 30 \ \mu \ W/cm^2 \ [b] and 72 \ \mu \ W/cm^2 \ [c])$

Fill factors of this particular cell have different values ranging from 0.11 to 0.32.

S. Antohe, Chapter 11 "Electronic and Optoelectronic Devices Based on Organic Thin Films " in <u>HANDBOOK OF</u> <u>ORGANIC ELECTRONICS AND PHOTONICS</u>, Electronic Materials and Devices, Edited by Hari Singh Nalwa, Volume 1 : Pages: 433, 440, AMERICAN SCIENTIFIC PUBLISHERS, Los Angeles, California, USA, 2007, ISBN : 1-58883-096-9

University of Bucharest – Faculty of Physics MEOD Research Center

Table 3. The typical parameters of ITO/CuPc/(CuPc+TPyP)/TPyP/Al cells. S. Antohe, V. Ruxandra, L. Tugulea, V. Gheorghe and D. Ionascu, J. Phys. III France 6, 1133 (1996), Copyright EDP Sciences (1996)

λ (nm)	Curve See Fig.	l' _{inc} (μ W/cm²)	J _{sc} (nA/cm²)	U _{oc} (mV)	ff	ղ (%)
520	[a]	3	107	75	0.32	0.09
520	[b]	12	410	220	0.29	0.22
520	[c]	30	916	405	0.28	0.35
590	[a]	6	136	87	0.23	0.05
590	[b]	30	528	277	0.31	0.15
590	[c]	72	1250	350	0.11	0.07

University of Bucharest – Faculty of Physics MEOD Research Center

- As a conclusion, this new type of three-layered organic photovoltaic cells having a co deposited layer of (CuPc +TPyP), between the CuPc and TPyP films, clearly suggest an improvement, although modest, over two-layered cells.
- The co deposited interlayer, has been found to act as an efficient carrier photogeneration layer because: on the one hand, the built-in potential drops across it and, on the other hand, here there is the region of maximum photogeneration rate, as a result of exciton dissociation via the exciplex of (CuPc-TPyP+)* dyes.
- The fill factors of 0.11-0.32 represent an improvement over single and double-layered cells.
- Moreover, the power conversion efficiencies of three-layered cells, ranging from 0.07 to 0.35%, are 2-3 times greater as compared to those for double-layered cells.
- The thickness of about 400 nm of our three-layered cells is mainly responsible for the high internal resistance, which limits again the performances of the cells.
- By obtaining of an optimized structure as regarding the thickness of the layers and the architecture of the cells, substantial improvement of the organic photovoltaic cells would be possible.

University of Bucharest – Faculty of Physics MEOD Research Center

Electrical and photovoltaic properties of photosensitized ITO/a-Si:H p-i-n/TPyP/Au cells

Cell configuration (inset) and current-voltage characteristics of ITO/a-Si:H p-i-n/TPyP/Au cell

Action spectra of short-circuit photocurrent of: (a) ITO/a-Si:H p-i-n/Au and (b ITO/a-Si:H p-i-n/TPyP/Au cells. (c) Optical absorption spectrum of TPyP layer

S. Antohe, L. Ion, N. TomozeiuT. Stoica, E. Barna, Solar Energy Materials & Solar Cells 62, 207 (2000)

University of Bucharest – Faculty of Physics MEOD Research Center

Photovoltaic Structures Based on Polymeric Materials: poly(3-hexylthiophene); 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C₆₁ and Their Blend P3HT:PCBM

- Enlarging the photoactive region in the case of three-layered structures an increased efficiency was obtained, due to the increased number of sites for exciton dissociation [4].
- Following the photovoltaic mechanism, an excitonic one, which takes place in this kind of cells, the structures based on polymeric blends, seem to be more promising for photovoltaic cells with relatively high efficiency about 4-5 %, but more cheep than the organic monomeric thin films [5].
- Polymer-fullerene bulk heterojunction solar cells have shown promising perspectives because of the high quality of these materials in terms of mobility and thermal stability [6-10].
- Here we present structural, morphological, electrical and photoelectrical properties of organic photovoltaic cell based on poly(3-hexylthiophene) [P3HT], 1-(3methoxycarbonyl)-propyl-1-phenyl-(6,6)C₆₁ [PCBM]
- We stress the differences observed for the devices based on single components and those fabricated from blend of the above polymers.

Sample preparation

 Photovoltaic cells based on polymer blends in the sequence

ITO/PEDOT/P3HT:PCBM(1:1)/Al

were prepared, using optical glass substrates covered with ITO , 300 nm thicness and 25 Ω/\Box

• PEDOT, P3HT and PCBM layers were deposited by spincoating technique, while Al back electrode was deposited by thermal vacuum evaporation.

University of Bucharest – Faculty of Physics MEOD Research Center

Action Spectra of: ITO/PEDOT/P3HT/A1, ITO/PEDOT/PCBM/A1,

ITO/PEDOT/P3HT:PCBM (1:1)/Al structures and the Absorption Spectra of the organic absorbers

Photocurrent normalized to the power of the light source for ITO/PEDOT/P3HT/Al structure

Photocurrent normalized to the power of the light source for ITO/PEDOT/PCBM/Al structure

Photocurrent normalized to the power of the light source for ITO/PEDOT/P3HT:PCBM(1:1)/Al structure

Larisa Magherusan, Polona Skraba, Cristina Besleaga, Sorina Iftimie, Nicoleta Dina, Mirela Bulgariu, Carmen-Gabriela Bostan, C. Tazlaoanu, A. Radu, L. Ion, M. Radu, A. Tanase, G. Bratina, S. Antohe, Journal of Optoelectronics and Advanced Materials, Vol. 12, No. 2, February 18, 2010, p. 212-218

University of Bucharest – Faculty of Physics MEOD Research Center

• The absorption spectrum of the blend was enlarged from 300 nm until 700 nm, showing that the so called *"co - sensitization effect"* still exist in the case of blend structures like in the case of D/A bilayer cell, [13, 14].

• The action spectra are enlarged too, in the range (300-600 nm) with increased photocurrent,.

• The number of Donor/Acceptor (D/A) interfaces was significantly increased by blending the two donor and acceptor materials, giving rise to the so called *"bulk heterojunctions"*, in which the dimension of photon-capturing domain becomes on the same order of the average exciton diffusion lengths, (5 to 80 nm for most organic semiconductors).

• The larger D/A interface *reduces the exciton loss*, then the blend film *harvest more photons* than in the case of single P3HT or PCBM layer cells.

• A stronger photo generation take place in a blend, but the carrier loss seem to be a major problem, due to the fact that the charge carriers can be easily trapped in the isolated phase donor or acceptor domains which still coexist with the blend. More that, if the donor and acceptor are in direct contact with both collector electrodes, the recombination of the non-equilibrium charge carriers at the blend/electrode interfaces could be strong enough.

• The action spectra of blend structure, has an "anti-batic" behavior. Even though the energy offsets between Donor-LUMO and Acceptor –LUMO represent the key driving force for the exciton dissociation, then for the enhanced photocurrent in a blend structure, [15], the presence of the internal *electric field across the blend/electrode interfaces*, has an important contribution to the photovoltaic response, too, [16]. The observed anti-batic spectra, could be explained in terms of "filtering effect".

The fourth quadrant *I-V* characteristic of the ITO/ P3HT: PCBM (1:1)/Al device under illumination with 400 nm monochromatic light and

$$P_{in} = 5,19 \times 10^{-5} \text{ W}$$

			ITO/PEDOT/	
	ITO/PEDOT/P3HT/AI	ITO/PEDOT/PCBM/AI	P3HT:PCBM(1:1)/Al	
V _{oc} (V)	0.84	0.1	0.58	
I _{ph} (A)	1.85×10 ⁻⁸	4.1×10 ⁻⁸	1.35×10 ⁻⁶	
$P_m(W)$	1.7×10 ⁻⁹	5.88×10 ⁻¹⁰	2.25×10-5	
P _{in} (W)	2.15×10-5	3.3×10 ⁻⁵	5.19×10 ⁻⁵	
FF (%)	10	14	28	
η(%)	0.01%	0.0017%	0.44%	

Larisa Magherusan, Polona Skraba, Cristina Besleaga, Sorina Iftimie, Nicoleta Dina, Mirela Bulgariu, Carmen-Gabriela Bostan, C. Tazlaoanu, A. Radu, L. Ion, M. Radu, A. Tanase, G. Bratina, **S. Antohe**,

Journal of Optoelectronics and Advanced Materials, Vol. 12, No. 2, February 18, 2010, p. 212-218

University of Bucharest – Faculty of Physics MEOD Research Center

Absorption spectra of the blend P3HT: PCBM (1:1) layer as prepared (black line) and after 6 months (red line)

• Very poor stability

• The action spectra measured after 2 hours and 48 hours from the Al contact deposition, respectively, showed a permanently decreasing of the photocurrent

• Trying to explain this behavior, the absorption spectra for all the polymeric layers (P3HT, PCBM, and P3HT: PCBM (1:1), respectively), were measured at different intervals of time.

• It do not appear changes in the above absorption spectra of the blend P3HT: PCBM (1:1) layer as prepared (black line) and after 6 months (red line), resulting that no changes takes place in the optical processes giving rise to the excitons creation in these materials. But dramatically changes seem to be present in physical processes involved in the photo generation of the charge carriers, their separation and collection to the electrodes.

• Now, systematically studies are carried out, devoted to explain these processes in view to the increasing the stability of the promising photovoltaic structures.

ITO/PEDOT/P3HT:PCBM(1:1)/LiF/AI

Structure of ITO/PEDOT/P3HT:PCBM(1:1)/LiF/Al

Absorbtion spectrum of ITO/PEDOT/P3HT:PCBM/LiF (red curve) and action spectra for as prepared sample (black/white curve) and after 24 hours (black curve)

I-V dark characteristic

The fourth quadrant I-V characteristic in A.M.1.5,

Sorina Iftimie, A. Majkic, Cristina Besleaga, V. A. Antohe, A. Radu, M. Radu, Iulia Arghir, Camelia Florica[,] L. Ion, G. Bratina, S. Antohe,

E-MRS 2010 Symposium L, in press at Thin Solid Films 2010

University of Bucharest – Faculty of Physics MEOD Research Center

Hybrid Inorganic/Organic Structures for Photovoltaic Applications

University of Bucharest – Faculty of Physics MEOD Research Center
Dye Sensitized Solar Cells

University of Bucharest – Faculty of Physics MEOD Research Center

Dye Sensitized Solar Cells based on Nanoastructured TiO₂ Thin Films

University of Bucharest – Faculty of Physics MEOD Research Center

Dye Sensitized Solar Cells based on Nanoastructured TiO₂ Thin Films

University of Bucharest – Faculty of Physics MEOD Research Center

Dye Sensitized Solar Cells based on Nanoastructured TiO₂ Thin Films

TiO₂ thin fils were prepared by PLD technique using a Nd:YVO₄ laser (puls duration 8ps, λ =532nm, average power 1W, rate 50kHz, flux of 0.17J/cm²)

Cornelia Sima, C. Grigoriu, S. Antohe, Thin Solid Films (2010), doi:10.1016/j.tsf.2010.07.002

University of Bucharest – Faculty of Physics MEOD Research Center

Cell	Oxygen pressure (Torr)	TiO ₂ film thickness (μm)	t (ºC)	U _{oc} (mV)	j _{sc} (mA/cm²)	P _{max} (mW)	η(%)
1	1	11.4	450	532	0.32	0.09	0.10
2	0.5	13.4	450	730	1.66	0.29	0.69
3	0.3	8.3	450	723	4.16	0.72	1.74
4	0.3	13.0	450	767	3.72	0.75	1.81
5	0.3	8.0	RT	488	0.83	0.07	0.16
6	0.04	5.7	450	348	0.41	0.03	0.07

The typical cell parameters in regim of photoelement of the cells based on TiO_2 nanostructured thin films deposited at different pressures and with different thickness

Cornelia Sima, Constantin Grigoriu, Stefan Antohe **Thin Solid Films (2010), doi:10.1016/j.tsf.2010.07.002**

University of Bucharest – Faculty of Physics MEOD Research Center

Hybrid inorganic/organic structures – a route towards efficient and low-cost photovoltaic cells

- In the last decade hybrid structures, based on nanostructured inorganic materials and organic thin films have attracted a great deal of interest for producing low-cost solar cells.
- Among the organic semiconductors envisaged to be used in such structures, metal-doped phthalocyanines (MePc, with Me=Cu, Mg, Zn, etc.) are the most studied, due to their peculiar properties:
- Their optical absorption in the visible range of the solar spectrum is strong, but based on an excitonic mechanism. Most of the photogenerated excitons annihilate by direct recombination before the occurring of the charge separation in the internal field of the structure.
- This charge extraction problem can be avoided by creating a large area heterostructure at the interface with an inorganic semiconductor, where the photogenerated excitons will dissociate by electronic transfer.
- A typical value for the diffusion length of the exciton in organic semiconductors is of 30-80 nm, while in order to achieve the required efficiency in light absorption, the absorber layer has to be at least 100 nm thick.
- One way to improve the extraction of the charge carriers will consist in significantly increasing of the area of the interface between the two components of the heterostructure, then reducing the dimensions of D/A heterojunctions to the dimension of exciton diffusion length in the organic absorber.
- In this way the driving forces, due to potential difference between Donor LUMO and Acceptor LUMO, will acts efficiently for exciton dissociation and photo charge carrier generation, what is expected for the efficient fourth generation solar cells.

University of Bucharest – Faculty of Physics MEOD Research Center

Problem: excitonic absorption mechanisms and charge extraction?

- Two kind of hybrid structures were prepared and characterized:
- hybrid structures based on nanostructured ZnO electrode, photosensitized by CuPC, as organic absorber
- hybrid structures based on CdTe wires arrays/ZnPc or TPyP
- Three type of **hybrid structures based on ZnO electrodes**:

Nanostructured ZnO thin films/CuPc

ZnO wires aray/CuPc

ZnO hexagonal column array/CuPc

For **second type**, a template method has been used to produce quasione-dimensional (q-1D) nanostructured systems based on CdTe. *The hybrid cells, based on the heterostructure at the interface between wire array of CdTe, and the organic film ZnPc and TPyP*, were produced and characterized.

University of Bucharest – Faculty of Physics MEOD Research Center

Physical properties of ZnO

- Large optical absorption coefficient;
- Wide and direct band gap of 3.37 eV;
- Very large exciton binding energy (60 meV);
- Good chemical stability;
- Very large piezoelectric coefficients;
- Good candidate for spintronics applications

University of Bucharest – Faculty of Physics MEOD Research Center

Layered structures based on nanostructured ZnO films and CuPc as organic absorber

Configuration of ITO/ZnO/CuPc/Cu cell (a) and absorption spectrum of CuPc film (uptriangles) and action spectrum of shortcircuit photocurrent (filled squares) (b)

I-U characteristics of ITO/ZnO/CuPc/Cu cell, recorded in dark (black curve) and under illumination with monochromatic light (660 nm) (red curve)

S. Antohe, L. Ion, C. Tazlaoanu, G. Socol, L. Magherusan, I. Enculescu, D. Bazavan, I.N. Mihailescu, and V.A. Antohe, MRS Spring Meeting 2007, SUA, Symp. Z 4.9, pg. 538

University of Bucharest – Faculty of Physics MEOD Research Center

Layered structures based on nanostructured ZnO films and CuPc as organic absorber

XTEM image of AZO thin film

SAED pattern of an AZO thin film

C.Ghica, L. Ion, G. Epurescu, L. Nistor, S. Antohe, M. Dinescu, Journal of Nano-science and Nanotech-nology, volume 10, Number 2, February 2010, pp. 1322-1326 (5)

University of Bucharest – Faculty of Physics MEOD Research Center

Spectral dependence of the external quantum efficiency (EQE) of the Al/CuPc/ZnO/glass structure in the case of the ZnO385 layer (a) and the ZnO388 layer (b). The solid line shows the absorption spectrum of CuPc. The absorption spectrum of the ZnO layer is shown in the inset.

The EQE in the Q region of the CuPc absorbent (500-800 nm), measures 6-10% for sample 385. At higher photon energies, the photo generation processes take place both in CuPc and ZnO, increasing EQE up to 30% at wavelengths below 500 nm. In case of sample 388, the EQE value raises up to 14-25% in the spectral range corresponding to the CuPc absorption Q-band.

In the two analyzed cases, the difference consists in the PLD deposition parameters for the AZO films growth. The increased oxygen pressure in the case of sample 388 lead to an AZO film with an increased surface roughness, determining a higher value for the EQE. The explanation comes from two aspects: a rough interface means a higher photoactive area and a beter collection efficiency at the AZO electrode; the rough interface determines diffuse scattering of light incident on this interface back into the CuPc absorbing layer, increasing the absorption efficiency.

C.Ghica, L. Ion, G. Epurescu, L. Nistor, S. Antohe, M. Dinescu, Journal of Nanoscience and Nanotechnology, volume 10, Number 2, February 2010, pp. 1322-1326 (5)

University of Bucharest – Faculty of Physics MEOD Research Center

Layered structures based on nanostructured ZnO films and CuPc as organic absorber

1) Nanostructured ZnO thin films were deposited on optical glass substrates <u>by pulsed laser</u> <u>deposition</u> (PLD), their structure and morphology being optimized for photovoltaic applications.

Image of the plasma during PLD deposition

		Temperature	Pressure	Fluence	Distance	Thickness
Sample	Target	(°C)	(mbar)	(mJ/cm ²)	(cm)	(nm)
	In ₂ O ₃ :ZnO					
ZnO_1	(10%)	500	5	1,6	5	513
	In ₂ O ₃ :ZnO					
ZnO_2	(3%)	500	5	1,6	5	430

University of Bucharest – Faculty of Physics MEOD Research Center

Morphological analysis of the samples by AFM, revealed that

the films have low roughness.

AFM image of ZnO_1 sample.

with 7 nm roughness

AFM image of ZnO_2 sample.

with 10 nm roughness

S. Antohe, I. Enculescu, Cristina Besleaga, Iulia Arghir, V. A. Antohe, V. Covlea, A. Radu, L. Ion, 2010 Ceramics Engineering&Science proceedings (CESP), Volume 31, Issue 7 ,,Nanostructured Materials and Nanotechnology IV", pg.71-83, Volume Editors Sanjay Mathur and Tatsuki Ohji, Wiley, ISBN 978-0-470-93495-1

University of Bucharest – Faculty of Physics MEOD Research Center

□ Structural analysis of the samples by X-ray diffraction, revealed that the films consist of a hexagonal-close packed wurtzite type phase ZnO, (002) preferentially oriented in the growth direction.

X-ray Diffraction pattern of: (a) ZnO:In2O3 (10%), (b) ZnO:In2O3 (3%), films

ZnO films transparency was investigated in the visible region of solar spectrum

Transmission spectra at

room temperature.

S. Antohe, I. Enculescu, Cristina Besleaga, Iulia Arghir, V. A. Antohe, V. Covlea, A. Radu, L. Ion, 2010 Ceramics Engineering&Science proceedings (CESP), Volume 31, Issue 7 ,,Nanostructured Materials and Nanotechnology IV", pg.71-83, Volume Editors Sanjay Mathur and Tatsuki Ohji, Wiley, ISBN 978-0-470-93495-1

University of Bucharest – Faculty of Physics MEOD Research Center

Electrical measurements

(C)

Temperature dependence of (a) Hall constant (a); resistivity (b); mobility

University of Bucharest – Faculty of Physics MEOD Research Center

Photovoltaic response of the ZnO:In₂O₃ (10%)/CuPc/Al cell

EQE measured under illumination with monochromatic light, is given by:

$$EQE(\lambda) = \frac{I_{sc}(\lambda)hc}{q\lambda P_{\lambda}}$$

where: $P\lambda$ is the incident light power, $Isc(\lambda)$ is the short-circuit current, q is the elemental charge, h is Planck's constant, c – speed of light.

EQE characteristics (dark curve) and absorption spectrum (red curve) for a ZnO/CuPc/Al photovoltaic cell

S. Antohe, I. Enculescu, Cristina Besleaga, Iulia Arghir, V. A. Antohe, V. Covlea, A. Radu, L. Ion, **2010** Ceramics Engineering&Science proceedings (CESP), Volume 31, Issue 7 "Nanostructured Materials and Nanotechnology IV", pg.71-83, Volume Editors Sanjay Mathur and Tatsuki Ohji, Wiley, ISBN 978-0-470-93495-1

University of Bucharest – Faculty of Physics MEOD Research Center

S. Antohe, I. Enculescu, Cristina Besleaga, Iulia Arghir, V. A. Antohe, V. Covlea, A. Radu, L. Ion, 2010 **Ceramics Engineering&Science** proceedings (CESP), Volume 31, Issue 7 "Nanostructured **Materials** and IV", Nanotechnology pg.71-83, Volume Editors Mathur Sanjay and Tatsuki Ohji, Wiley, ISBN 978-0-470-93495-1

Current-voltage characteristics for ZnO:In2O3(10%)/CuPc/Al photovoltaic

cell in the fourth quadrant under AM1.5 illumination (FF=25%), η = 0.03%

University of Bucharest – Faculty of Physics MEOD Research Center

ZnO Wire Aray/CuPc Structures

Growth method of wires arrays using a nuclear track etched polycarbonate membrane as template

2. Chemical etching of the template 1. Irradiation of the template,(polycarbonate(aqueous solutions of 5M NaOH and foils -Makrofol N, Bayer, 10% volume methanol at 50°C. 30 μ m thick), with heavy Etching rate of only 200 nm/h allows a good control of the diameter of the ions (e.g. U, 11.4 MeV/ created cylindrical pores. nucleon, at different fluences in the range 4. ZnO wires deposition 10⁴– 10⁸ ions/cm²

3. Working electrode deposition (Au layer, 50 nm + Cu layer, $10 \ \mu m$ thick)

University of Bucharest – Faculty of Physics MEOD Research Center

Preparation of multisegment Ni, ZnO, Ni wires

- The electrochemical deposition was performed using a VoltaLab potentiostat controlled by a computer.
- Nickel was deposited at 60°C using a Watts bath.
- ZnO was deposited from a 0.1M $Zn(NO_3)_2$ aqueous solution at 90°C.
- A three electrode configuration was used with a platinum counterelectrode and a commercial saturated calomel electrode (SCE) as reference.
- The following electrode reactions occur during the deposition of the ZnO segments [17]:
- $2e_{-} + NO_{3}^{-} + H_{2}O \rightarrow NO_{2}^{-} + 2OH^{-}$ (1)(2)
- $Zn_2^+ + 2OH^- \rightarrow Zn(OH)2 \rightarrow ZnO \downarrow + H_2O$
- The deposition potential was chosen at -0.8 V vs. (SCE).

I. Enculescu, M. Sima, M. Enculescu, M. Enache, L. Ion, S. Antohe, R. Neumann, Phys. stat. solidi (b), 244, 1607 (2007).

Voltammetric curve recorded for Au/polycarbonate electrode (0.5 cm^2 surface) at 89°C in 0.1M Zn(NO₃)₂ solution. The potential scanning rate was 5 mV/s.

C. Tazlaoanu, L. Ion, I. Enculescu, M. Sima, Elena Matei, R. Neumann, Rosemary Bazavan, D. Bazavan, S. Antohe, Physica E: Low-dimensional Systems and Nanostructures, Vol 40/7 pp 2504-2507, 2007

University of Bucharest – Faculty of Physics MEOD Research Center

SEM imagine of ZnO wire arrays

C. Tazlaoanu, L. Ion, I. Enculescu, M. Sima, Elena Matei, R. Neumann, Rosemary Bazavan, D. Bazavan, S. Antohe, Physica E: Lowdimensional Systems and Nanostructures, Vol 40/7 pp 2504-2507, 2007

University of Bucharest – Faculty of Physics MEOD Research Center Conferinta "Diaspora in cercetarea stiintifica si invatamantul superior din Romania" Bucuresti, 21-24 Septembrie 2010, Workshop; "Materiale multifunctionale micro si nanostructurate: de la cercetare la aplicatii" 22 Septembrie,INCDFM, Magurele, Ilfov

XRD spectrum of ZnO nanowire

array showing wurtzite type crystalline structure

Photovoltaic response of the ZnO wire arrays/CuPc/Al

Molecular Structures of CuPc and an Image of the ZnO wire array/CuPc/Al cell

EQE characteristics (dark curve) and absorption spectrum (red curve) for a ZnO(nws)/CuPc/AI photovoltaic cell based on ZnO wire array.

S. Antohe, I. Enculescu, Cristina Besleaga, Iulia Arghir, V. A. Antohe, V. Covlea, A. Radu, L. Ion, **2010 Ceramics Engineering&Science proceedings (CESP), Volume 31, Issue 7** "Nanostructured Materials and Nanotechnology IV", pg.71-83, Volume Editors Sanjay Mathur and Tatsuki Ohji, Wiley, ISBN 978-0-470-93495-1

cell

University of Bucharest – Faculty of Physics MEOD Research Center

ITO/ZnO hexagonal column array / CuPc/Al

Preparation of ZnO nanotubes

- The electrochemical deposition was performed on a 90 nm ITO covered optical glass, using a VoltaLab potentiostat controlled by a computer.
- A three electrode configuration was used with a platinum counter electrode, a commercial **saturated calomel electrode** (**SCE**) as reference and ITO as working electrode.
- ZnO was deposited from a 0.1M $Zn(NO_3)_2$ aqueous solution at 90°C.
- The deposition potential was chosen at **-850 mV** vs. (SCE).
- The following electrode reactions occur during the deposition of the ZnO segments [17]:
- 2e-+NO₃⁻+H₂O→NO₂⁻+2OH⁻
 Zn₂⁺+2OH⁻→Zn(OH)2→ZnO↓ + H₂O

(1) (2)

Cristina Besleagă, Iulia Arghir, Camelia Florica, T.L. Mitran, Elena Matei, I. Enculescu, N. Dina, L. Ion, ^(*)S. Antohe, Manuscript Number: MSB-D-09-01352R1, accepted to be published in **Materials Science and Engineering B**, 2010

University of Bucharest – Faculty of Physics MEOD Research Center

Nano-engineered ZnO thin films / CuPc/Al structures

-In the above mentioned conditions, the hexagonal-columnar growth $\hat{is}^{2\theta (deg.)}$ perfectly reproductible.

University of Bucharest – Faculty of Physics MEOD Research Center

ITO/ZnO hexagonal column array/CuPc/Al structures

SEM HV: 30.00 kV View field: 9.65 µm 2 μm VEGA\\ TESCAN

SEM micrograph of CuPc/ZnO(NTs)/ITO structure.

Det: SE Detector

Spectral dependence of EQE for an ITO/ZnO(NTs)/CuPc/Al photovoltaic cell (black) and CuPc absorption spectrum (red). EQE one order of degree higher than the previous structures based on ZnO with small roughness

Cristina Besleagă, Iulia Arghir, Camelia Florica, T.L. Mitran, Elena Matei, I. Enculescu, N. Dina, L. Ion, ^(*)S. Antohe Manuscript Number: MSB-D-09-01352R1, accepted to be published in **Materials Science and Engineering B, 2010**

University of Bucharest – Faculty of Physics MEOD Research Center

Hybrid structures based on submicron CdTe wire arrays and CuPc as organic absorber

- Among A_2B_6 semiconductor compounds, CdTe is one of the best candidates for electronic and optoelectronic applications due to:
 - suitable optical band gap (wide, direct band gap);
 - large optical absorption coefficient;
 - good electronic properties;
- Specific electronic and optical properties of CdTe (nano)wires, induced by the low dimensionality and high surface to volume ratio, make them suitable for:
 - electronic applications (FETs)
 - optoelectronic applications (lasers, active waveguides, photovoltaic cells)
 - gas sensors

University of Bucharest – Faculty of Physics MEOD Research Center

Preparation of CdTe nanowire arrays using a nuclear track etched polycarbonate membrane as template

Polarisation curves for CdTe nanowires deposition. Sweep rate was 5 mV/s.

The peak at 500 mV corresponds to the potential where CdTe is deposited. The shift towards more positive potential at the second and third sweep, is due to the fact that the deposition is further favorised by the presence in the substrate of Te atoms.

- CdTe nw array
- 10⁸ wires/cm²
- 300 nm diameter
- Voltage: -500 mV;
- Composition:

49% Cd; 51%Te

LucianION,IonutENCULESCU,StefanANTOHE,JournalofOptoelectronicsandAdvancedMaterials,Vol.10,No.12,December2008,3241-3246

SEM micrographs of an array of CdTe wires (10⁸ wires/cm², 300 nm diameter) deposited at -500 mV vs. SCE and the result of Energy Dispersive X-ray (EDX) analysis.

University of Bucharest – Faculty of Physics MEOD Research Center

-The stoichiometric composition is obtained at about -530 mV vs. SCE.

- More negative deposition potentials, give rise to wires richer in cadmium

- deposition at -600 mV
- composition:51% Cd 49% Te

-SEM micrographs of an array of CdTe wires (10⁸ wires/cm², 300 nm diameter) deposited at - 600 mV vs. SCE and the result of EDX analysis.

Lucian ION, Ionut ENCULESCU, Stefan ANTOHE, Journal of Optoelectronics and Advanced Materials, Vol. 10, No. 12, December 2008, 3241-3246

University of Bucharest – Faculty of Physics MEOD Research Center

Electrical measurements

Fig. 15 a) I-V characteristics recorded for a CdTe multisegment wire array (300 nm diameter, 10^6 wires/cm²). The sequence of the segments is specified in Table I (CT8 sample). b) Temperature dependence of the electrical resistance of the sample, measured at applied voltages in the range where I-V curves were linear.

Multisegment wires (300 nm diameter, 10⁶ pores/cm²):

- CdTe, deposited at -680 mV, 700 nm long;
- CdTe stoichiometric, deposited at -510 mV;
- Cd, deposited at -680 mV, 700 nm long.

 $R = R_0 \exp\left(\frac{E_{ac}}{k_{\rm p}T}\right)$

The resistance is thermality activated, with an activation energy of 0.03 eV in the high temperature range

The producing of hybrid CdTe wire array/organic dye photovoltaic structures

Technological steps in producing hybrid CdTe wire array/organic dye photovoltaic structures.

•After exposing the wire arrays by dissolving the polycarbonate template, an organic dye thin film (400 nm thick) was deposited by thermal vacuum evaporation.

•On top of organic layer, a transparent electrode (ZnO) was grown by Pulsed Electron Deposition. (PED)

University of Bucharest – Faculty of Physics MEOD Research Center

The spectral dependence of the external quantum efficiency (EQE) of CdTe(ws)/ZnPc and CdTe (ws)/TPyP structures

EQE of a CdTe wire array/ZnPc structure (a) and, respectively, of CdTe wire array/TPyP (b). For comparison purposes, absorption spectra of ZnPc, TPyP and CdTe films deposited on optical glass in the same conditions are also given (in red and green lines).

Lucian ION, Ionut ENCULESCU, Stefan ANTOHE, Journal of Optoelectronics and Advanced Materials, Vol. 10, No. 12, December 2008, 3241-3246

University of Bucharest – Faculty of Physics MEOD Research Center

Hybrid CdTe wire array/CdTe/organic dye photovoltaic structures

University of Bucharest – Faculty of Physics MEOD Research Center

Hybrid CdTe wire array/CdTe/organic dye photovoltaic structures

2. An organic dye (TPyP,
CuPC or ZnPc) was deposited
by vacuum sublimation.

S. Antohe, I. Enculescu, L. Ion, 6th International Conference – NN09& 3rd International Summer School-SS-NN09 on Nanosciences & Nanotechnologies, Aristotle University of Thessaloniki, 13-15 July 2009, Abstract Book, pg.31, oral presentation, in press **Materials Science and Engineering B, 2010**

University of Bucharest – Faculty of Physics MEOD Research Center

Hybrid CdTe wire array/CdTe/organic dye photovoltaic structures

3. The structures were completed by depositing on top a thin ZnO film, by Pulsed Electron Deposition (PED) technique.

L. Ion, I. Enculescu, V. A. Antohe, A. Radu, M. Radu, G. Chisulescu, N. Dina, S. Antohe, 2nd International Symposium on Flexible Organic Electronics, 8-10 July 2009, Porto Carras Grand Resort, halkidiki, Greece, Book of Abstracts, pg.110, in press **Materials Science and Engineering B, 2010**

University of Bucharest – Faculty of Physics MEOD Research Center

The spectral dependence of the external quantum efficiency (EQE) of CdTe(ws)/CdTe/ZnPc and CdTe (ws)/CdTe/TPyP structures

EQE of a CdTe wire array/CdTe(200nm)ZnPc structure (a) and, respectively, of CdTe wire array/CdTe(200nm)/TPyP (b). For comparison purposes, absorption spectra of ZnPc, TPyP and CdTe films deposited on optical glass in the same conditions are also given (in red and green lines).

University of Bucharest – Faculty of Physics MEOD Research Center
Conclusions

- The single - layer ITO/CuPc/Al and ITO/TPyP/Al cells have a photovoltaic response as a result of the charge carrier photogeneration in CuPc or TPyP layer and their separation in the built electric field present at Al/CuPc and ITO/TPyP interface, respectively.

- The two-layer ITO/CuPc/TPyP/Al cells have a power conversion efficiency of about 100 times greater than that of organic monolayer cells, due to a strong cosensitization effect. The ITO/Chla/TPyP/Al cells show rectification and photovoltaic phenomena due to barrier formed at the Chla/TPyP interface.

- The three-layered organic photovoltaic cells (ITO/CuPc/(CuPc +TPyP)/TPyP/Al), clearly suggest an improvement, although modest, over two-layered cells. The co deposited interlayer acts as an efficient carrier photogeneration layer, as a result of exciton dissociation via the exciplex of (CuPc-TPyP+)* dyes. The power conversion efficiencies of three-layered cells, ranging from 0.07 to 0.35%, are 2-3 times greater as compared to those for double-layered cells. - The spectral sensitization of an a-Si:H solar cell using an organic layer was obtained. The action spectrum was extended by 30 nm to longer wavelengths range, using a 100 nm thick layer of TPyP.

- The structures based on the P3HT:PCBM (1:1) blend shows a promising photovoltaic response, with a value of 0.58 V for the open-circuit voltage, and a short-circuit current of 1.35×10^{-6} A, and then the fill-factor and power conversion efficiency are increased of about two order of degree, than that measured in the case of structures based on P3HT or PCBM polymers.

Conclusions

- Different kind of nanostructured ZnO electrodes photosensitised with an organic absorber were produce and characterized.
- EQE of ZnO wire arays /CuPc structures was 4 time larger than that of ZnO nanostructured film/CuPc structures.
- EQE of ZnO nanotubes arays /CuPc structures was about one order of degree higher than that of ZnO nanostructured film/CuPc structures.
- Large arrays of CdTe submicron wires were successfully produced by electrodeposition, using a template method. Etched nuclear track polycarbonate membranes were used as template.
- Different kind of hybride photovoltaic structures based on CdTe nanowire arrays were prepared using ZnPc and TPyP as organic absorber
- EQE of CdTe nws/CdTe (200nm)/ZnPc structures was two order of magnitude higher than in the case of CdTe nws/ZnPc.
- Currently, work is in progress to improve the efficiency of these structures, by increasing the density of the wire arrays, improving the crystalline quality of both the wires and the organic dyes thin films and improving also the quality of the inner interface of the structures.

REFERENCES

- [1] Tang, C.W. Appl. Phys. Lett. 1986, 48, 183.
- [2] Antohe, S., *Phys.Stat.Sol.*(*a*)1993,136, 401.
- [3] Antohe, S.;Tugulea, L., *Phys. Stat. Sol.*(*a*)1991, 128, 253.
- [4] Antohe, S.;Ruxandra,V.; Tugulea,L.; Gheorghe,V.;Inascu,D.,J.Phys.III France 1996, 6, 1133.
- [5] Schmidt-Mende, L.; Fechtenkötter, A.; Müllen, K., Moons, E.; Friend, R.H., MacKenzie, J.D. *Science* 2001, 293, 1119.
- [6] Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85;
- [7] Chirvase, D.; Parisi, J.; Hummelen, J.C.; Dyakonov, V. Nanotechnology 2004, 15, 1317;
- [8] Li, G.; Shrotriya, V.; Yao, Y.; Yang, Y. J. Appl. Phys. 2005, 98, 043704;
- [9] Schilinsky, P.; Asawapirom, U.; Scherf, U.; Biele, M.; Brabec, C.J. *Chem. Mater.* 2005, *17*, 2175;
- [10] Kim, Y.; Choulis, S.A.; Nelson, J.; Bradley, D.D.C.; Cook, S.; Durrant, J.R. *Appl. Phys. Lett.* 2005, 86, 063502.

University of Bucharest – Faculty of Physics MEOD Research Center

- [11] S. Antohe, I. Munteanu, I. Dima, Rev. Roum. Phys., 34 (6), 665 (1989)
- [12] S. Antohe, Rev. Roum. Phys., 37, 309 (1992)
- [13] S. Antohe, L. Tugulea, V. Gheorghe, V. Ruxandra, I. Caplanusi and L. Ion, *Phys. Stat. Sol.*(a) 153, 581 (1996)
- [14] L. Tugulea and S. Antohe, *Photosynthesis Research II*, 845 (1993)
- [15] S. Antohe, Journal of Optoelectronics and Advanced Materials, 2, 498 (2000)
- [16] S. Antohe, Romanian Reports in Physics, 53, 427 (2001)
- [17] S. Antohe, D. Ionascu, V. Ruxandra, L. Tugulea, I. Spânulescu, N. Tomozeiu and I. A. Qazii, *Romanian Reports in Physics*, 48, 581 (1996)
- [18] S. Antohe, L. Ion, N. Tomozeiu, T. Stoica, E. Barna, *Solar Energy Materials&Solar Cells* 62, 207 (2000)
- [19] S. Antohe, Chapter 11 "Electronic and Optoelectronic Devices Based on Organic Thin Films '' in HANDBOOK OF ORGANIC ELECTRONICS AND PHOTONICS, Electronic Materials and Devices, Edited by Hari Singh Nalwa, Volume 1 : Pages: 433, 440, AMERICAN SCIENTIFIC PUBLISHERS, Los Angeles, California, USA, 2006, ISBN : 1-58883-096-9
- [20] I. Enculescu, Z. Siwy, D. Dobrev, C. Trautmann, M.E. Toimil-Molares, R. Neumann, K. Hjort, L. Westerberg, R. Spohr, *Appl. Phys. A* 77, 751 (2003).

[21] I. Enculescu, M. Sima, M. Enculescu, M. Enache, L. Ion, S. Antohe, R. Neumann, *Phys. stat. solidi* (b), 244, 1607 (2007).

[22] C. Tazlaoanu, L. Ion, I. Enculescu, M. Sima, Elena Matei, R. Neumann, Rosemary Bazavan, D. Bazavan, S. Antohe, *Physica E: Low-dimensional Systems and Nanostructures, Vol 40/7 pp 2504-2507, 2007.*

[23] M. Ghenescu, L. Ion, I. Enculescu, C. Tazlaoanu, V. A. Antohe, M. Sima, M. Enculescu, E. Matei, R. Neumann, O. Ghenescu, V. Covlea, S. Antohe, *Physica E: Low-dimensional systems and Nanostructures, Vol* 40/7 pp 2485-2488, 2007

[24] S. Antohe, L. Ion, C. Tazlaoanu, G. Socol, L. Magherusan, I. Enculescu, D. Bazavan, I.N. Mihailescu, and V.A. Antohe, *MRS Spring Meeting 2007, SUA, Symp. Z 4.9, pg. 538*

[25] L. Ion, I. Enculescu, Rosemary Bazavan, R. Neuman and S. Antohe, *IMRC, Chongqing, China, June 9-12 2008, Symposium D, O-D11.14, Pg.173*

[26] L. Ion, I. Enculescu, Elena Matei, C. Tazlaoanu and S. Antohe, *IMRC, Chongqing, China, June 9-12 2008, Symposium B, P-B3.40, Pg.55*

[27] L. Ion, I. Enculescu, S. Antohe, Journal of Optoelectronics and Advanced Materials, Vol. 10, No. 12, December 2008, 3241-3246

[28] C.Ghica, L. Ion, G. Epurescu, L. Nistor, S. Antohe, M. Dinescu, *Journal of Nano-science and Nanotechnology, volume 10, Number 2, February 2010, pp. 1322-1326 (5)*

[29] S. Antohe, I. Enculescu, Cristina Besleaga, Iulia Arghir, V. A. Antohe, V. Covlea, A. Radu, L. Ion, 2010 Ceramics Engineering & Science proceedings (CESP), Volume 31, Issue 7, Nanostructured Materials and Nanotechnology IV", pg.71-83, Volume Editors Sanjay Mathur and Tatsuki Ohji, Wiley, ISBN 978-0-470-93495-1

[30] Larisa Magherusan, Polona Skraba, Cristina Besleaga, Sorina Iftimie, Nicoleta Dina, Mirela Bulgariu, Carmen-Gabriela Bostan, C. Tazlaoanu, A. Radu, L. Ion, M. Radu, A. Tanase, G. Bratina, S. Antohe, *Journal of Optoelectronics and Advanced Materials, Vol. 12*, *No. 2, February 18, 2010, p. 212-218*

University of Bucharest – Faculty of Physics MEOD Research Center

Thank you for your attention!

University of Bucharest – Faculty of Physics MEOD Research Center