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A filament can be
(1) a transient, dynamically generated state

(2) a cuasi-coherent structure (vortex)

Different plasma/fluid systems
e laser beam filamentation (axial symm. wave guide NSE)
e relativistic electron beam filamentation (Fast Ignition Scheme)
e filamentation of current sheets in tokamak (ELM)
e plasma (coherent) flows; crystals of vortices in non-neutral plasmas

e fluid vorticity filaments (incl. planetary atmosphere)
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Filamentary structures in current /vorticity sheets (ELM tokamak)

FIG. 4 (color).  (a) High-speed video image of the MAST plasma obtained at the start of an ELM. (b) The predicted structure of
an ELM in the MAST okamak plasma geometry, based on the nonlinear ballooning mode theory.

Filaments in MAST Breaking-up of the vorticity /density

layer.

Purely growing filamentation (dynamic-generated)
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Filamentation is generated by the spatial modulation of incident
beam in the transversal direction, which give rise to changes of the
plasma refractive index. This enhances the modulation leading to

instability.
e ponderomotive force

e thermal effect: inverse bremsstrahlung heating (heat transport is
important: local and non-local)

OF

- (—2A|E\2) E

The Nonlinear Schrodinger Equation.
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Relativistic electron beam filaments
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Figure 2. () Central longitudinal cut of magnetic field B, in kT
generated by electrons with a mean Kinetic energy of 2.5MeV at the
peak of the pulse, (b) perpendicular cut of beam current density j, in
units of 10™ Acm™? at 7 = 98 um. Plasma densities higher than
200 g cm ™ are located inside the dashed circle.

3D PIC Honrubia

Fast Ignition Scheme: a laser-
generated relativistic electron beam
(MeV /electron) propagates to a hot
spot of a precompressed fusion fuel
target. The direct current is compen-

sated by a return current at perifery.

e Weibel instability

e two-stream instability
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FIG. 1 (color online). Smapshots of the evolution of transverse
electromagnetic fields (£, and B,) and beam filament densities
(ng) during the nonlinear stage at a time T = 20027/ )} for
four different simulation cases. See text for explanations.

2D PIC Karmakar

Transversal plasma temperature, col-
lisions and magneto-acoustic modes
compete to control the Weibel insta-
bility. Magnetic field is generated

which shows cuasi-coherent structure.
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Filamentation in Laser-generated plasmas (for Inertial Fusion)

The equation for the magnetic field generated in a laser-driven plasma

—V*°B —e. B) - B
oen dtv + <u06n0> (—e, x VB)-V|V
OB 1 ~ 2
= = + Hoen? [(—€e. x Vng) - V]| Ving
+-1 [(—8. x Vo) - V] V2T
€no

where T7 is the perturbed temperature

8T1 n/ Té 83
— + T —1 — —
8?5 + 0 (fy ) o To 8y

—[(=e. x VB) - V| V°T}

When the T7 perturbation and the scalar nonlinearity BOB /0y can be
neglected, the equation for B becomes the classical CHM-type equation.

A sheet of current is broken up into filaments.
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Ideal fluid in 2D space (Euler eq.)

dw OV2 1

— = > = n) . 2 —
7 0 o —|—[( Vgpxn) VJ_]VJ_w 0
At late times of the relaxation process: the sinh-Poisson equation
Ay + ysinh (8¢) =0 (1)

The Charney-Hasegawa-Mima equation

The equation (CHM) derived for the two-dimensional plasma drift
waves and for Rossby waves in planetary atmosphere is:

(V3= 1) 90 4 k02 4 (V10 7) V.IVio=0 (2
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Coherent structures in fluids and plasmas (reality)

Geoff Mackley

Rings of vorticity Nice tornado vortex. Vortex ring emitted
(Leonard 1998) by the volcano Etna.

F. Spineanu — Diaspora 2010 —



Filaments 10

Compare the two approaches

Conservation egs. Lagrangian
8_"’+v.(nv) - 0 c(m“,¢V,ap¢V) — Sz/da:dtL
ot
5 o oL oL 0
_ A V4 et —V —V -7 F 8 v o v -
mn<8t+v )v "’ i out 5 (gow) 09
3 o . .
;”(EJ“"'V)T = TVamp(Vev)mmi Vv Q Valid for : a single system.
: Just give the initial state.
Valid for : coffee, ocean, sun. &

Lagrangians are preferable. But, how to find a Lagrangian 7 See Phys.Rev.
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We will try to write Lagrangians not directly for fluids and plasmas but

for equivalent discrete models.

An equivalent discrete model for the Euler equation

dr’ 0 l
dt’*:e”— wnG (rp —1y) , 4,j=1,2, k=1 N (3)

J
ark n=1,n#k

the Green function of the Laplacian

G (r,r) z—%m('r?’/') (4)
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An equivalent discrete model for the CHM equation

The equations of motion for the
vortex wy at (xk,yr) under the ef-
fect of the others are

_om, 3 W
dt OYp.
o, e W
dt (93%

where

I The Rosette stone,
W — 7'('2 ZwleKO (m |r7, _ r_] |) (Bl"ltlSh Museum) the same

1=1 jzl message written in three alphabets

17

Physical model — point-like vortices — field theory.
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The water Lagrangian
2D Euler fluid: Non-Abelian SU (2), Chern-Simons, 4" order

L = ="y (8MAVAP + %AMA,,AP) + (5)

0 (¥1008) - 110 (007 )+ 1 (00,9])

where
D,V =0,V + [Ay, Y]

The equations of motion are

iDoW — —%D2\If . % H\p \I!q qf} (6)
i
Flu,y = __5ul/p<]p (7)

2
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The Hamiltonian density is

oo o) 21 (o)

Using the notation D4+ = Dy 1D

Tr ((DﬂIf)T (DﬂIf)) — ((D_\D)T (D_\If)) n

7 (¥ [[v.9'] 9])

Then the energy density is

N = %Tr ((0-w)' (D-w)) >0

and the Bogomol’nyi inequality is saturated at self-duality

D_Vv =0

Oy A_ —O_Ay +[AL, A = [\p qﬁ}

(10)

(11)
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The static solutions of the self-duality equations

The algebraic ansatz:

EnE] = H (12)
H E.] = +42E.
tr(ELF_) = 1
tr(H2) = 2
taking
Y =1Ey +pE (13)
and
A, = %(a—a*)H (14)
A, = %(a—I—a*)H
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The gauge field tensor

F_|__ = (—(9+a* — 0_a) H

and from the first self-duality equation

a¢1 8@01 *
Oz 0o

and their complex conjugate from (D_)' = 0.
Notation : pi = [¢1]", pa = |
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Aln (p1p2) =0
Alnps +2(p1 —p1 ) =0

We then have

At + ~ysinh (By) = 0.

The water we drink is self-dual
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The Lagrangian of 2D plasma in strong magnetic field:
Non-Abelian SU (2), Chern-Simons, 6! order

e gauge field, with “potential” A", (u=0,1,2 for (¢,x,y)) described
by the Chern-Simons Lagrangean;
e matter (“Higgs” or “scalar”) field ¢ described by the covariant kine-

matic Lagrangean (i.e. covariant derivatives, implementing the min-

imal coupling of the gauge and matter fields)

e matter-field self-interaction given by a potential V (gb, ng) with 6"

power of ¢;

e the matter and gauge fields belong to the adjoint representation of

the algebra SU (2)
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L = —re"Pir ((%A,,qut%AuA,,Ap) (20)
~tr [(D*)" (D,9)]
v (e')

Sixth order potential

v (0:6") = gt ([0 6] - 20) ([[6:6.0] - v79)

(21)
The Euler Lagrange equations are
oV
Fh — —
D.D"¢ = - 5 (22)
—ke"MPE,, =1iJ" (23)
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The energy can be written as a sum of squares. The self-duality eqgs.

D_¢ = 0 (24)
1
Fie = £ [~ ||0,¢'],0| ¢']
The algebraic ansatz : in the Chevalley basis
[Evw,E-] = H (25)
|H,E+] = =£2F4
tr (E+E_) = 1
tr (HQ) = 2

The fields
¢=¢1EL + poB
Ay =aH,A_ = —-a"H
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Equations for the components of the density of vorticity (here for '+)

1 1

_iAlnpl = — 2 (p1 — p2) [2 (p1+ p2) — 02} (26)
1 1 2

—§Aln,02 = ﬁ(Pl_PQ) [2(/)1 —|—p2)—v } (27)

Aln (p1p2) =0

introduce a single variable

(28)

(03]

and obtain

—%Alnp: —

| =
RN
5| S
N~

(\V)
o\
e

|
|-
N~
1
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The energy at Self-Duality for two choices of the Bogomolnyi form for the

action functional

Integrand of Esn' (1/4)[cosh(y) - (cosh(\p))2 +1]
05 T

Integrand of ESD, (1/4) [(11/8)sinh(w)z(—2+cosh(w)+(3/8)cosh(w)]

0.8
0
-0.5
uJ8 Lua
5 5
£ 2
151 £
s
25 i i i i i i i o1 | i i |
-15 -1 -05 0 05 1 15 2 25 -15 -1 -05 0 05 1 15
Magnitude of the streamfunction y Magnitude of the streamfunction v
At — sinh ¢ (coshy — 1) =0 L
A1 + — sinh v (coshyp — 1) =0
2
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This simplest form of the equation governing the stationary states of
the CHM eq.

A + %sinhw(costh —1)=0

The 'mass of the photon’ is

V2 1
m — — — —
K Ps

K = Cg
’02 = Qci
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Integration of the differential equation
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Figure 1: The structure of the space of initial conditions. The success-

ful (coherent vortex) solutions are shown as red dots.
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Comparison with numerical simulations in the

asymptotic regime
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Figure 2: Comparison between numerical calculation of the CHM sta-
tionary states (Khukharin 2002) and solution of the Equation (1).

Periodic structure of vortices.
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Vortex crystals in non-neutral plasma

=

L
= 3
vorticity (10" sec)

FIG. 1. Vortex crystals observed in magnetized electron columns (Ref. 8). The color map is logarithmic. This figure shows vortex crystals with (from left to
right) M =3, 5, 6, 7, and 9 intense vortices immersed in lower vorticity backgrounds. In a voriex erystal equilibrium, the entire vorticity distribution {(r, #)
is stationary in a rotating frame; i.e., { is a function of the variable — ¢+ %ﬂrz, where 4 is the stream function and £} is the frequency of the rotating frame.

Too ® w0 % 2 0 @™ 40 0 W W

Comparison of our vortex solution with experiment.
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Laser generated plasma

230 Meurcu, Tajma, and Bdanow:

FIQE. 18. %ortex row behind the laser pube se=nin the Eoooh-
tours of the magnetic field.

Figure 3: Structure of the magnetic field in a plasma generated by a
strong Laser pulse. The equation for B has the same nonlinear form
as the CHM equation.
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i
=0 ]:i
Figure 4: Filamentation in a current sheet.
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Conclusions

The universal nonlinearity seems to be the unifying factor of

filamentation processes in plasma/fluids.

The field theoretical formalism provides interesting results:
e identifies preferred states as extrema of an action functional
e derives explicit differential equations for these states
e reveals the universal nature of the extrema, as self-dual states
e practical applications

Next steps: numerical solutions of the asymptotic equation and of
the Field-Theory equations of motion.
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1 Magnetic vortices in a nonuniform

plasma

Nycander and Pavlenko.
The equations

€

1
(%+v-V>V:—%V(nT) m(E—I—VXB)
d _
£(Tn1 ") =0
0B
E = ——
V X 5
VB = —ugenv
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with time scales slower than w,'. Taking
B = B(x,y)e,
1 9
VXxv=e, V°B
HO€ENQ

The final form of the equation

0 ny 01Ty nh 0B

— (B-V*B ~VBxe,) V]V’ B=-—""—+ 1B

(975( >+[( xe:)- V] ng 0y  ng Oy

Charney-Hasegawa-Mima eq. + scalar nonlinearity
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Coherent structures in fluids and plasmas (numerical 1)

(b)

1=l0e D. Montgomery,
~ W.H. Matthaeus, D.
Martinez, S.
Oughton, Phys.
Fluids A4 (1992) 3.

(c) (d)

t=196 t=374

Numerical simulations of the Euler equation.
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Coherent structures in fluids and plasmas (numerical 2)

(e) 1=38

H. Brands, S. R.

Maasen, H.J.H.

Clercx

Phys. Rev. E 60.

(dy =18 (e} =25

() e=100

Numerical simulations of the Navier-Stokes

equation.
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Coherent structures in fluids and plasmas (numerical 3)

PO AN Ui A )

Current at t = 5.0

R. Kinney, J.C.
McWilliams, T.
Tajima
Phys. Plasmas 2
(1995) 3623.

Current at t =-1540.0 . Vorticity ot t = 1540.0

Numerical simulations of the MHD equations.
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Comparison with experiment

“The right hand side of the Massive-Photon equation
T T T T T
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Figure 21 {ox, ) scatter plots of the decaying vorticity feld in Exp. 17, at (a) 1 min, (¥} § min, (¢} 10 min, and (d) 15 min after switching off the
forcing. The fon, yh-values of all points on a grid in physical space, with a mesh size of appreaimately (1 mm)®, are plotted,

LLT

Experimental Investigation of quasi-two-di) ional in a stratified fluid with source-
sink forces
Frans de Rooij, P.F. Linden, S.P. Dalzicl, Journal of Fluid Mcchanics 383 (1999) 249.

Figure 5: The pair (1, w) and the experiment (w is negative).
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Comparison with numerical simulations in the

asymptotic regime
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Figure 6: Comparison between numerical calculation of the CHM sta-
tionary states (Khukharin 2002) and solution of the Equation (1).

Periodic structure of vortices.
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Applications

The sokuton strsamhnoton wivy)

o % &

g8 8 4 0

= o » » 0 @™ W

Figure 7: The atmospheric vortex, the plasma vortex, the flows in

tokamak,the crystal of vortices in non-neutral plasma.

The soknon sreamfircson vy

toroidal vorticity (surface piof), poloidal velocity stream function (comtours)

Max 0. 0‘?1295'

-0.02

-0.04

-0.08

008 [
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The tropical cyclone

The tangential component of the velocity, vy, center is (0,0)

05

-03 02 o1

Figure 8: The tangential component of the velocity, vg(x,y)
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The tropical cyclone , comparisons

’ ““.n' J

Figure 9: The solution and the image from a satelite.

The solution reproduces the eye radius, the radial

extension and the vorticity magnitude.
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Scaling relationships between main parameters of the tropical cyclone

eye-wall radius, maximum tangential wind, maximum radial extension

‘
80F |
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5‘ 60f ‘l 0.2f /,’/o
s | '
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g 30r | ] 0.1r /o
E>a: 1 //
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Few remarkable hurricanes

Table 1: Comparison between calculated and respectively observed

magnitudes of the maximum tangential wind for four cases of tropical

cyclones

Name Input (obs) Calculated Observed
mie g | [ Resbyp [ | @
(km) o (km) (m/s) (m/s)

Andrew || 120 0.1 0.72 117.85 64.31 68

Katrina || 300 0.111 0.83 | 212 88.6 77.8

Rita 350 0.125 0.98 252.47 77.5 77.8

Diana 160 0.1125 || 0.845 | 133.81 56.86 55

(Comment ne pas perdre la téte?)
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Profile of the azimuthal wind velocity vy (1)
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Comparison between the Holland’s empirical model for

vy (continuous line) and our result (dotted line).
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Tokamak plasma. Solution for L = 307 : mono- and multipolar vortex

The sohibon stamhuncion wixy) Tha scluion streamiuncton () The sohibon stamhuncion wixy)
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Self-organisation of the drift turbulence (Wakatani-Hasegawa)

(a) . TIME=S,0 (b) TIME=S.0

FIG. 1. (a) The density contour and (b) the potential con-
tour from the three-di ional p imulation of elec-
trostatic plasma turbulence in a cylindrical plasma with mag-
netic curvature and shear. In (b) the solid (dashed) lines are
for the positive (negative) potential contours. Note the devel-

of closed p ial cont near the =0 surface.

The solution streamiunction ixy)
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puared with the predicted profile Golid liseh based om the self-
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The crystals of plasma vortices

The solution streamfuniction vix.y) The vorticity w(x.y) resulting from the solution y(x.y) L L O O S S N T
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Figure 10: The crystals of plasma vortices.
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Vortex crystals in non-neutral plasma

=

L
c k3
vorticity (10" sec)

FIG. 1. Vortex crystals observed in magnetized electron columns (Ref. 8). The color map is logarithmic. This figure shows vortex crystals with (from left to
right) M =3, 5, 6, 7, and 9 intense vortices immersed in lower vorticity backgrounds. In a voriex erystal equilibrium, the entire vorticity distribution {(r, #)
is stationary in a rotating frame; i.e., { is a function of the variable — ¢+ %ﬂrz, where 4 is the stream function and £} is the frequency of the rotating frame.
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Comparison of our vortex solution with experiment.
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Quasi-degenerate directions
in the tunction space ot solutions

There is a class of functions that verify to a good precision the

equation but they are NOT exact solutions.

Solutions and approx-solutions, representing static flow

configurations, may have:
e different shapes (from smooth to highly concentrated)
e approximately the same energy and total vorticity

This suggests that the system may slide along paths in the function
space at almost no cost in energy or vorticity. This is interesting for

vorticity concentration
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The sehticn streamfunctien, wixy)
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Peaked profiles have lower energy

11420 energy
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Numerical solution starting with sech4 /3

The error, as measure of the departure from sohtion The eiror, as measure of the departure from sohdion The emor, as measure of the departure from sokition

8 5 g 8 8

I
no
3
/

25 4 1
peaking factor of initial sech4/2 func peaking factor of initial sech4/2 funci peaking factor of initial sech4/2 function

Figure 11: Three intervals on the (peaking factor, amplitude) parame-

ter space.

Very weak variation of the error functional along the path (line of

minimum error relative to the exact solution).
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Radial integration

Figure 12: The functional error [ d*r(w + nl)?.

String of quasi-solutions.
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Along the string of quasi-solutions the vortices are more and more

concentrated

The final energy

amplitude of initial sech4/3 function

[

8
peaking factor of initial sech4/3 function

Figure 13: Green points: smooth, but progressively more peaked vor-

tices; red: quasi-singular vortices.

The energies €¢inq; and the vorticities €2 finq; are only slightly different.
We conclude that the system can drift along this path, under the

action of even a small external drive.
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System of interacting particles in plane

A system of particles in the plane interacting through a potential. The

Hamiltonian is

-3 gm.
— 2"
where
MmsvVs = Ps — €sA (rs|ri,re, ..., rN)
the potential at the point r;
A (rs|ri,re, ..., ry) = (aé (ri,ro, ..., rN)i:1,2
i L 4 = 7“‘; _Tg
a, (ri,ra,...,ry) = 5 ¢ €q 5
TR q#s ’rS o I‘q’
The vector potential A is the curl of the Green function of the Laplacian
1 _gjrd 17 2 1 _ 82
=gl =9 Inr Veiz=Inr =6 (r)
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e separate the matter degrees of freedom

e Consider the interaction potential as a free field = new degree of
freedom of the system, and find the Lagrangian which can give

this potential.

e Couple the matter and the field by an interaction term in the

Lagrangian
According to Jackiw and Pi the field theory Lagrangian
L = Lpatter + Los + Linteraction
with

N
L N L
matter — imsvs
s=1
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The Chern-Simons part of the Lagrangian

LCS — g/d27“ 6a676a14514,y
= g/dQT—XA /dQTAO

= (ct,r)

where

B=VxA
0A
E=-VA° -
ot
The interaction Lagrangian is
N N
Ly = Z esvs - A(t,rg) — Z es AY (t,r,)
s=1 s=1
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Define the current
vt = (¢, vy)

Mz

esvhd (r —ry)

s=1

the interaction Lagrangian can be written

—/d2rAMj’“‘
= /dQTA-j—/dQTAOp

The current at the continuum limit

Lint

j'u — (p7j>
with 5
dp
37 +V-j=0
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1. Eliminate the gauge-field variables in favor of the matter variables,

by using the gauge-field equations of motion.

The equations of motion of the gauge field are

S Fag = j (30)
1
B=——p
K
. 1 .. .
Bt = —gl g

K

2. Define the canonical momenta.

But not yet.
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It is time to find the field that will represent the continuum
limit of the density of discrete points

The right choice : a complex scalar field ®.

Remember now that the momentum is the generator of the space
translations which means that it has the form : 9/0x.

(No subversive quantum activities)
Define the momenta as covariant derivatives
II(r) = [V—ieA(r)]¥(r)
= DV (r)
and the conjugate
I = (Dw)
The number density operator is

p=UTT
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The potential A (r) is constructed such as to solve the
Chern-Simons relation between the field B =V x A and the charge
density ep:
B=-°% P
K

The potential is then

A(r) = VXE/dQT’ G(r—r)p()

K

where G (r — r’) is the Green function of the Laplaceian in plane.

The curl of the Green function is

1
VxG(r—-r)=—-——Vo(r—r1)

27
where /
y—y
tanf (r — r') =
( ) p——

and 6 is multivalued.
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The Hamiltonian

H:/dZTH

1S

1 * g 2
H=— (DV) (DV) - = (U*W
S~ (DY) (DW) - ¥ (v'w)
with the equation of motion
oV (r,t 1
P LDy (e ) 4 A (n0) — gp(r )W (rt) (8D

The potential is related to the density p and to the current j:

A(r,t):VXE/der(r—r’)p(r’,t)+ gauge term
K

AV (r,t) = _Ux© /d27“ G(r—r")j(',t) + gauge term
K
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Write U as amplitude and phase ¥ = p!/2 exp (iex) and inserting this
expression into the equation of motion derived from the Hamiltonian

the imaginary part gives the equation of continuity

dp
T iv-i=0
or VY
and the real part gives:
Vilnp = 4m (eAO — g,o)

1 1
+2 (eA — §V>< lnp) (eA + §V>< lnp)
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The static self-dual solutions
All starts from the identity (Bogomolnyi)

IDU|> = |(D; £iDy) U £+ mV x j+ eBp

Then the energy density is

He (D) £iDy) 0> + 2V xj— (L + <\ 2
- — Z — —_ -
om TR 2 T\ 2 T ok )
Taking the particular relation
o2
9=+—"
mek

and considering that the space integral of V X j vanishes,

1
o = %/d% ((Dy £ iDy) U

This is non-negative and attains its minimum, zero, when V¥
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satisfies
DV £+ 1DoW =0

or
DV =:DxWVw

which is the self-duality condition.

Then decomposing again ¥ in the phase and amplitude parts,
1
A=Vy+—Vxlnp
2e
Introducing in the relation derived from Chern-Simons

B:VXA:—Ep
K

we have ,

VZlnp = :|:2%,0

which is the Liouville equation.
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Formulation in terms of a curvature
SD is a geometrico-algebraic property of a fiber space : a differential

form is equal to its Hodge dual.
For this model there is no clear geometric structure. However:

Define the two ”potential-like” fields

./4_|_ — A_|_ — )\¢
A_ = A_+ )¢

and calculate the ”curvature-like” fields

Ky =04 A — 0+ AL + Ay, AL
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We then have

tr { K} K_}

~2 (010" +0_a) + X2 (p1 — p2)]”
—\2[(D465 + 0-¢1) + 2 (agh — a*é)|

or
—tr{K.K_}>0
since it is a sum of squares and the equality with zero is precisely the

SD equations.

The self-duality indeed appears as a condition of a flat
connection. A non-zero curvature means that the Euler fluid is not

at stationarity.
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The energy close to stationarity (or: self-duality)

We can use the expression of the energy, after applying the

Bogomolnyi procedure,

1

E=_u((D-¢) (D_¢))

The energy becomes

1
E=—
2m <p1

and, if we take

we have

2m

1 Ops on ’
b S 2 b S
T2 2p2 Ox _ ox _ e
1
— = p=exp(¢)
P2
=1
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1 1 9y Oy °

B = o lexp (¢) + exp (—v)] 297 +Z8£IZ—_ —2a”

This form of the energy shows in what consists the approach to the

stationarity and the formation of structure:

1. a constant 1 on the equilines combines its radial variation with

that of of the angle y;

2. the potentials a and a® become velocities and they contain the

derivatives along the equilines of the angle Y.
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The expression of the F'T' current
The formula for the F'T current

JO = [T, U]
it t pow] )T
Jio= 2([@,1)@\1;] [(szp) \PD
We have
7= lsia—a) (ot ) i (o - o) |
— 2_@@ a )\p1 T P2 Z&Epl P2
JY = 1_2(0,—|—CL*)( + )—zg( —p2)| H
— 2 | pP1 T P2 By P1 — P2
J° = (m—p)H
or
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1
Te = 5i(pr + p2) 04 [ — (20)] — i, (o1~ p2)

1

To = = 3ipr + p2) O- [+ (20x)] — 5i0- (o1 — po)

at SELF-DUALITY we have

w = —sinh
and it results
1 . L
Jr = il +p2) 04 [¥ = (2iX)] — i04w
L. : L.
J- = —gilp+p2) 0- [y + (2ix)] - 5i0-w

Is-there any pinch of vorticity?
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The equations of motion of the F'T model
The equation resulting from F .

0
i%—%bqﬁl (32)
B 10%¢p; 1 [0(a—a*) o 002
B _§8x2+§[ Ox ¢2+<a_a)8—x]
10 1
5 (@)~ 5 (a—a*) by
10%¢y 1 [0(a+a*) o\ 0o
T2 oy 2_[ oy %*(“”)07]
1 0o 1 w1 R
_58—y <—;) (a+a, )+§(CL—|—CL ) gbg
—(p1 — p2) 1
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The equation resulting from F_.

092

Ty + 21092 (33)
= ey [ e e 3]

32 (@) + 5 a—a) s

—%%2522 + % [8(@(;; a*>¢2 + (a + a*) %@2]

+2%%Z2 (a+a*)+ % (a + a,*)2 b9

+ (p1 — p2) P2

Compare with Liouville (non-Abelian) case. Where is the dynamics?
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Abelian-dominated dynamics

The last Lagrangian
In certain cases the model collapses to an Abelian structure, where

(¢, A*) are complex scalar functions

L= (D"¢)" (Duo) + lme“”pAuFup -V (I¢I2)

4
where 5
¢ .
DM¢ = a? + Z@A’u¢
and

2 2
v (16l*) = S 1ol (lef* —?)
with metric
g'LW — (17 _17 _1)
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oV
p —
L
5gli PFVP — JP
where
J'=iel¢p” (D"¢) — (D"¢)" ¢]
From the second equation of motion B = —=p one finds

AO_KLB 10

= @W ~ o5 [phase of (¢)]

In a field theory one can obtain the energy-momentum tensor by
writing the action with the explicit presence of the metric g"”
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followed by variation of the action to this metric.

T = (Do) (Do) + (D) (D))"
~guw [(D20)" (Dx6) = V (6]

The energy is the time-time (00) component of this tensor

P o= [ (D) (Dod) + (Do) (Duo) 4 (1)

= /d2r (%'f)l f;jQ + (Dr¢)" (Dro) +V (Iqﬁz)]

The second term imposes that B and |q5|2 vanish in the same points.

Then the magnetic flux lies in a ring around the zeros of ]¢|2.
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The energy is transformed similar to the Bogomolnyi form

E = /d%[\(Dxiz‘Dy)gb\z
2+(88|f)2]

2
[gnsZe (oo

1
:I:ev2<I>+§ / dl-J

r=00

Restrict to the states
1. static (0/0t = 0);
2. the current goes to zero at infinity such that the last integral is zero.

Then the energy consists of a sum of squared terms plus an
additional term that has a topological nature, proportional with the
total magnetic flux through the area.
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Taking to zero the squared terms we get

(D, £i¢Dy,)¢p = 0
m? |o]° [ lol’
S R N Gl
The mass parameter is
2
m = 2e2v—
K

These are the equations of self-duality and the energy in this case is
bounded from below by the flux

E > ev? |0
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The first of the two SD equations can be written
eA* = £ 9; In |¢| + 0" [phase of ¢]

Replacing the potential in the second SD equation we get

2 2
Aln (|gf*) = m? |i‘2 ('f; = 1) — 0

equation that is valid in points where |¢| # 0. For these points there is

an additional term, a Dirac § coming from taking the rotational operator

applied on the term containing the phase of ¢.

Ay = exp (V) lexp (¢) — 1] + 4#25 (x — x;5)

j=1
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At infinity (|¢| >~ v) the covariant derivative term goes to 0

DFp — 0 at r — oo Ok + 1eArgp — 0
/ dl-Vin(¢) = i/d(phase of ¢) = 2mwin (34)
The flux is
<I>z/d2fr(V><A):2—7Tn
e

The magnetic flux is discrete, integer multiple of a physical quantity. The
topological constraint is ensured by a mapping from the circle at infinity
into the circle representing the space of the internal phase of the field ¢ in

the asymptotic region, S* — S* classified according to the first homotopy

group,

T (Sl) =7
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The paper on Bosonization of three dimensional non-abelian

fermion field theories by Bralic, Fradkin, Schaposnik.

The initial self-interacting massive fermionic SU (IN) theory in Euclidean
24+ 1 = 3 space

2
L= (ip+m) v — L5
NOTE

This is precisely the Lagrangian for the Thirring model, for which it is
possible to demonstrate the quantum equivalence with the sine-Gordon

model. See Ketov.
The model is here Abelian.

The action is

Irl) = [ d [0 - meiii - & (5v0)’]
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In order to show the equivalence the following substitution is made

(Uxt ZGXP{%/_OO dfﬂlagba(f) T i§¢($)}

where

(128
(.

Y =

Note that 1 are spinors and ¢ are bosons.

The equivalence will now consist of the following statement:

The functions 1+ satisfy the Thirring equations of motion provided the

function ¢ satisfies the sine-Gordon equation.

And viceversa.

This allows to demonstrate the equivalence between the correlation

functions of the two models.
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Between the coupling constant of the two theories there is the following
relation

B* 1

it 1+g Ve
which shows that the strong coupling of the Thirring (fermions) model is
mapped onto the weak coupling of the sine-Gordon (kinks and anti-kinks)

model.

The mesons of the SG theory are the fermion-antifermion bound states of

the Thirring theory.

The quantum bosonisation is done on the basis of the substitution shown

above, but taking the normal-ordered form of the exponential.

Yy = Cy rexp[As (2)] :

where
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This implies the relations

m(2)m2 coS <\/X¢> _ _mFaw

A m
S g = Ty

2mm

We make the following Remark: We see that the density of spinors (or
point-like vortices) 1) is expressed as the cos function of the scalar field of
the SG model. This looks very similar to what we have in our, more
complex, model. In our model the density of vorticity (which represents

the continuum limit of the density of point-like vortices) is

O ¢ = p1 — po
and the two functions are

p1 = o4l

p2 = |o—|?
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We can introduce scalar streamfunctions for each of these densities, since

they are associated with a sign of helicity
p1,2 = exp (Y1,2)
Then the total density of vorticity should be written
o'd = p1—p2
= exp (Y1) — exp (¢2)
But we know that at self-duality
Alnp; + Alnps =0

or
Awl + A¢2 =0

If we do not consider any background flow, then one possible solution of

this equation is

Y1 = —o
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and this gives the form of the density of vorticity

o'¢p = exp (Y1) —exp ()
= 2sinhy

We conclude that our theory is an extended form of the equivalence
between the fermion system in plane (like the Thirring model) and the

Sinh-Gordon model in plane.

Then, using the equivalences shown in the Thirring-sine-Gordon case, we
can identify the function ¢ from their equation (the sine-Gordon variable)

with the streamfunction v of our fluid, but multiplied with 2.

And the current of fermions in their case 1y*1), which is proved to be
expressed as a rotational of the SG function ¢, appears in our case as
follows: the current of point-like vortices is equal with the velocity since
their ¢ is our streamfunction 1 and their rotational of the SG’s ¢ is our
rotational of v, or the physical velocity.

We can say that we assist at a typical scenario of equivalence between the
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system of point-like vortices and the system of sinh-Gordon streamfunction

field, in a more extended, including Non-Abelian form.

The simplified result of the classical equivalence: Thirring/sine-Gordon

was that the density of vorticity is cos of a bosonic field.

We do not need the bosonization, 7.e. the substitution of the fermionic
variable with the exponential of the bosonic variable. However this can be

a demonstration of the adequacy of the substitution
p = exp (¥)

we do at the end of the calculation: we do that since we have in mind the
equivalence Thirring/sine-Gordon and the possibility to interpret our
introduction of the streamfunction 1 as a similar relationship between the

fermionic and bosonic fields.
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