

Spectral Coherent Combination of Ultra-Short Pulses

Daniel Ursescu, Romeo Banici, Laura Ionel, Sandel Simion, Constantin Blanaru, Laurentiu Rusen, Florin Jipa, Liviu Neagu, Marian Zamfirescu, *Razvan Dabu*

> Solid State Lasers Laboratory Institutul National pentru Fizica Laserilor, Plasmei si Radiatiei INFLPR, Romania

Contents

- The need of laser amplifiers parallelization
- Straight-forward approach: identical amplifiers
- Alternative solution proposed: spectral combination
- Experimental tests of the solution
- Conclusions

History of Laser Intensity

Similarity - Evolution of Microprocessors Key solution: architecture/organization emphasis

Parallelization is also the ELI solution!! Use of identical parallel amplification chains.

1 1

2 lasers, 10 PW each

Planned ELI-NP facility

Is there a better way to add power from parallel laser amplifiers?

10PW +10PW +10PW =... Preliminary evaluation

100 fs, 1kJ=>10PW

3*identical pulses of 10PW = 30PW

Relevant to ELI Coherent Beam Combination

BUT...

100 fs, 1kJ, **lambda=800nm**, $BW_1=8nm =>10PW$ 100 fs, 1kJ, **lambda=808nm**, $BW_2=8nm =>10PW$ 100 fs, 1kJ, **lambda=816nm**, $BW_3=8nm =>10PW$

Final pulse duration $tau_{f} \sim 1/(BW_{1}+BW_{2}+BW_{3}) \sim 33 \text{ fs}$ Power = 3kJ / tau_{f} = 90PW

Spectral COmbination of Optical Pulses

10PW+10PW+10PW=... 1D modeling

 1.0_{f}

0.8

0.6

INFLPR

3*(10 nm bandwidth@800nm), Pulse duration 92 fs, E²=39.1

3*10 nm bandwidth @ 800 nm + 810 nm + 820 nm,Pulse duration 48 fs, E²=59.5

Spectral combination of ultrashort pulses produces shorter pulses

How to multiplex short pulses with different wavelengths?

Collinear combination

Experimental demonstration of spectral combination of ultrashort pulses The collinear case

Idea of the experiment

Tuning the spectral composition of the pulses

Pulse duration: autocorrelation vs. reconstruction from spectrum

Non-linear power addition: Experimental results

INFLPR

1. Performances TEWALAS facility@INFLPR

Best result: $E_{pulse} = 460 \text{ mJ}$, Pulse-width = 23 fs, $P_{peak} \approx 20 \text{ TW}$ Typical value: $E_{pulse} = 400 \text{ mJ}$, Pulse-width = 25 fs, $P_{peak} > 15 \text{ TW}$

- parallelization is one possible solution for peak power up-scaling
- spectral combination solution is proposed
- in theory, the SC scales the power with the square of the number of beams
- we provided an experimental test of the SC

Outlook

CBC - From Concept to Completion

- First Step: Fringe-counting, interferometer for optical path shift monitoring;

