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I. INTRODUCTION

Main steps in the study of contact problems :

– modelling (constitutive law, contact boundary conditions, as-

sumptions on external forces,...) ;

– variational analysis (variational formulation, existence and

uniqueness results, properties of the solution,...) ;

– numerical analysis (analysis of semi-discrete and fully dis-

crete schemes, error estimates,...) ;

– numerical simulations.



Constitutive law

- elastic (linear, nonlinear) ;

- viscoelastic (with short memory, with long memory) ;

- viscoplastic (with or without hardening, internal state variables).

Contact conditions

- unilateral (rigid foundation) ;

- with normal compliance (deformable foundation) ;

- with normal damped response (lubricated foundation).



Frictional conditions

- classical Coulomb’s law of dry friction ;

- Tresca’s law ;

- Stromberg’s law (1995) ;

- slip, slip rate dependent friction laws ;

- total slip, total slip rate dependent friction laws.

Additional effects

- thermal effect ;

- piezoelectric effect ;

- damage ;

- adhesion ;

- wear.



Mathematical Theory of Contact Mechanics

It concerns the mathematical structures which underlie general

contact problems with different constitutive laws, varied geome-

tries, and different contact conditions.

Main feature

Cross fertilization between modelling and applications on the one-

hand, and mathematical analysis on the other-hand.

Aim of this lecture

To study a contact problem within the MTCM and to provide an

example of such cross fertilization.



Basic references

1. A. Signorini, Sopra alcune questioni di elastostatica. Atti

della Società Italiana per il Progresso delle Scienze, 1933.

2. G. Fichera, Problemi elastostatici con vincoli unilaterali.

II. Problema di Signorini con ambique condizioni al contorno,

Mem. Accad. Naz. Lincei, S. VIII, Vol. VII, Sez. I, 5, pp. 91–140,

1964.



3. G. Duvaut and J. L. Lions, Inequalities in Mechanics and

Physics, Springer-Verlag, Berlin, 1976.

4. P. D. Panagiotopoulos, Inequality Problems in Mechanics

and Applications , Birkhäuser, Boston, 1985.

5. N. Kikuchi and J. T. Oden, Contact Problems in Elasti-

city : A Study of Variational Inequalities and Finite Element

Methods , SIAM, Philadelphia, 1988.



II. QUASIVARIATIONAL INEQUALITIES

Notation

N∗ - set of positive integers ;

R+ - set of nonnegative real numbers, i.e. R+ = [0, +∞) ;

(X, (·, ·)X , ‖ · ‖X) - real Hilbert space, K ⊂ X ;

(Y, ‖ · ‖Y ) - real normed space ;

L(X, Y ), C(R+; X), C1(R+; X) - standard notation ;

C(R+; K), C1(R+; K) - set of continuous and continuously diffe-

rentiable functions defined on R+ with values on K, respectively.



Problem 1. Find u ∈ C(R+; K) such that, for all t ∈ R+,

(1) (Au(t), v − u(t))X + ϕ(Su(t), v)− ϕ(Su(t), u(t))

+j(u(t), v)− j(u(t), u(t)) ≥ (f (t), v − u(t))X ∀ v ∈ K.

Here :

A : K → X ,

S : C(R+; X) → C(R+; Y ), Su(t) = (Su)(t) for all t ∈ R+,

ϕ : Y ×K → R,

j : X ×K → R,

f : R+ → X .



Assumptions

(2) K is a closed, convex, nonempty subset of X .

(3)





(a) There existes m > 0 such that

(Au1 − Au2, u1 − u2)X ≥ m ‖u1 − u2‖2
X

∀u1, u2 ∈ K.

(b) There exists L > 0 such that

‖Au1 − Au2‖X ≤ L ‖u1 − u2‖X

∀u1, u2 ∈ K.



(4)





(a) For all y ∈ Y, ϕ(y, ·) is convex and l.s.c. on K.

(b) There exists α > 0 such that

ϕ(y1, u2)− ϕ(y1, u1) + ϕ(y2, u1)− ϕ(y2, u2)

≤ α ‖y1 − y2‖Y ‖u1 − u2‖X

∀ y1, y2 ∈ Y, ∀u1, u2 ∈ K.

(5)





(a) For all u ∈ X, j(u, ·) is convex and l.s.c. on K.

(b) There exists β > 0 such that

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)

≤ β ‖u1 − u2‖X ‖v1 − v2‖X

∀u1, u2 ∈ X, ∀ v1, v2 ∈ K.



(6) β < m.

(7)





For all n ∈ N∗ there exists rn > 0 such that

‖Su1(t)− Su2(t)‖Y ≤ rn

∫ t

0

‖u1(s)− u2(s)‖X ds

∀u1, u2 ∈ C(R+; X), ∀ t ∈ [0, n].

(8) f ∈ C(R+; X).

Remark 1. Condition (7) is satisfied for the integral operator and

for the Volterra-type operators.



Theorem 1. Assume that (2)–(8) hold. Then, the quasivaria-

tional inequality (1) has a unique solution u ∈ C(R+; K).

Proof. The proof is carried out in several steps. It is based on ar-

guments of elliptic variational inequalities, monotonicity and fixed

point. The crucial ingredient is the use of a new fixed point result

obtained in

M. Sofonea, C. Avramescu and A. Matei, A Fixed point

result with applications in the study of viscoplastic frictionless

contact problems, Communications on Pure and Applied Ana-

lysis, 7 (2008), 645–658. 2



Notation

C+ - set of des compact intervals included in R+. Moreover, for

1 ≤ p ≤ ∞ and k = 1, 2, . . ., denote

W k,p
loc (R+, X) = { u : R+ → X : u ∈ W k,p(I, X) ∀ I ∈ C+ };

W k,p(I,K) = { u : R+ → K : u ∈ W k,p(I, X) };
W k,p

loc (R+, K) = { u : R+ → K : u ∈ W k,p(I, K) ∀ I ∈ C+ }.



Theorem 2. Assume that (2)–(8) hold and, moreover, assume

that Y is a reflexive Banach space. Assume in addition that

there exists p ∈ [1,∞] such that

f ∈ W 1,p
loc (R+, X) and Sv ∈ W 1,p

loc (R+, Y ) ∀ v ∈ C(R+; X).

Then, the solution of the quasivariational inequality (1) has the

regularity u ∈ W 1,p
loc (R+, K).

Proof. Let I ∈ C+. We prove that u : I → K is absolutely

continuous and, moreover,

‖u̇(t)‖X ≤ c
(∥∥∥ d

dt

(Su(t)
)∥∥∥

Y
+ ‖ḟ (t)‖X

)
∀ t ∈ I.

We conclude that u̇ ∈ Lp(I ; X) and, therefore, u ∈ W 1,p
loc (R+, K).2



Numerical analysis

In the study of Problem 1 we obtained results concerning :

– existence and uniqueness of the solution for semi-discrete and

fully-discrete approximation scheme ;

– error estimates for semi-discrete and fully-discrete approximation

scheme.
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Fig. 1 – Physical setting



III. A FRICTIONAL CONTACT PROBLEM

Notation

Ω - bounded domain of Rd (d = 2, 3) ;

Γ - boundary of Ω ;

Γ1, Γ2, Γ3 - partition of Γ such that meas Γ1 > 0 ;

ν - unit outward normal on Γ ;

Sd - space of second order symmetric tensors on Rd ;

“·”, ‖ · ‖ - inner product and Euclidean norm on Sd and Rd.



σ - stress tensor ;

u - displacement field ;

ε - the deformation operator :

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i);

Div - the divergence operator : Divσ = (σij,j);

vν, vτ - normal and tangential components of v on Γ :

vν = v · ν, vτ = v − vνν;

σν, στ - normal and tangential components of σ on Γ :

σν = (σν) · ν, στ = σν − σνν;



Problem P. Find the displacement u : Ω×R+ → Rd and the

stress field σ : Ω× R+ → Sd such that, for all t > 0,

σ(t) = Aε(u̇(t)) + Bε(u(t)) in Ω,

Div σ(t) + f 0(t) = 0 in Ω,

u(t) = 0 on Γ1,

σ(t)ν = f 2(t) on Γ2,

uν(t) = 0 on Γ3,

‖στ (t)‖ ≤ g(‖u̇τ (t)‖),
−στ (t) = g(‖u̇τ (t)‖) u̇τ (t)

‖u̇τ (t)‖ if u̇τ (t) 6= 0

}
on Γ3,

u(0) = u0 in Ω.



Notation

V = { v = (vi) ∈ H1(Ω)d : v = 0 a.e. on Γ1, vν = 0 a.e. on Γ3 } ;

Q = { τ = (τij) ∈ L2(Ω)d×d : τij = τji, 1 ≤ i, j ≤ d } ;

Inner products :

(u, v)V =

∫

Ω

ε(u) · ε(v) dx, (σ, τ )Q =

∫

Ω

σ · τ dx;

Associated norms : ‖ · ‖V , ‖ · ‖Q.



Assumptions

(11)





(a) A : Ω× Sd → Sd.

(b) There exists LA > 0 such that

‖A(x, ε1)−A(x, ε2)‖ ≤ LA‖ε1 − ε2‖
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ A(x, ε) is measurable on Ω,

for any ε ∈ Sd.

(e) The mapping x 7→ A(x,0) belongs to Q.



(12)





(a) B : Ω× Sd → Sd.

(b) There exists LB > 0 such that

‖B(x, ε1)− B(x, ε2)‖ ≤ LB ‖ε1 − ε2‖
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ B(x, ε) is measurable on Ω,

for any ε ∈ Sd.

(d) The mapping x 7→ B(x,0) belongs to Q.

(13) f 0 ∈ C(R+; L2(Ω)d), f 2 ∈ C(R+; L2(Γ2)
d).



(14)





(a) g : Γ3 × R+ → R+.

(b) There exists Lg > 0 such that

|g(x, r1)− g(x, r2)| ≤ Lg |r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Ω.

(c) The mapping x 7→ g(x, r) is measurable on Γ3,

for any r ∈ R.

(d) The mapping x 7→ g(x, 0) belongs to L2(Γ3).

(15) u0 ∈ V.



Let A : V → V , ϕ : V × V → R, j : V × V → R, f : R+ → V

and S : C(R+, V ) → C(R+, V ) be defined by

(Au, v)V = (Aε(u), ε(v))Q ∀u, v ∈ V,

ϕ(u, v) = (Bε(u), ε(v))Q ∀u, v ∈ V,

j(u,v) =

∫

Γ3

g(‖uτ (t)‖) ‖vτ‖ da ∀u, v ∈ V,

(f (t), v)V =

∫

Ω

f 0(t) · v dx +

∫

Γ2

f 2(t) · v da ∀v ∈ V, t ∈ R+,

Sv(t) =

∫ t

0

v(s) ds + u0 ∀v ∈ C(R+, V ), t ∈ R+.



Problem PV . Find a velocity field w : R+ → V such that, for

all t ∈ R+,

(Aw(t), v −w(t))V + ϕ(Sw(t), v)− ϕ(Sw(t), w(t))

+j(w(t), v)− j(w(t), w(t)) ≥ (f (t), v −w(t))V ∀v ∈ V.

Theorem 3. Assume that (11)–(15) hold. Then, there exists

L0 > 0 which depends only on Ω, Γ1, Γ3 and A such that

Problem PV has a unique solution w ∈ C(R+, V ), if Lg < L0.

Moreover, if there exists p ∈ [1,∞] such that

(16) f 0 ∈ W 1,p
loc (R+, L2(Ω)d), f 2 ∈ W 1,p

loc (R+, L2(Γ2)
d),

then the solution satisfies w ∈ W 1,p
loc (R+; V ).



Proof. Problem PV represents a quasivariational inequality of the

form (1) in which X = Y = K = V . We prove that

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)

≤ c2
0Lg ‖u1 − u2‖V ‖v1 − v2‖V ∀u1, u2, v1, v2 ∈ V.

where c0 depends only on Ω, Γ1 and Γ3. On the other hand, A

satisfies condition (3) with m = mA. We use Theorem 1 to see that

Problem PV has a unique solution w ∈ C(R+,W ), if c2
0Lp < mA.

Therefore, we may take L0 = mA/c2
0.

Finally, we note that assumption (16) implies that f ∈ W 1,p
loc (R+; V ).

Therefore, by Theorem 2 we deduce that if (16) holds then w ∈
W 1,p

loc (R+; V ), which completes the proof. 2



Remark 2. Let w denote a solution of Problem PV and denote

by u and σ the functions defined by

u = Sw, σ = Aε(u̇) + Bε(u).

Then, the couple (u, σ) is called a weak solution of the frictio-

nal contact problem P . It follows that, under the assumptions of

Theorem 3, the contact problem P has a unique weak solution,

which satisfies

u ∈ C1(R+, V ), σ ∈ C(R+, Q).

In addition, if (16) holds then

u ∈ W 2,p
loc (R+; V ), σ ∈ W 1,p

loc (R+; Q).



Numerical approximation

Notation :

1) Ω - polygon or a polyhedron ;

2) V h - a the finite elements space of piecewise linear functions

corresponding to a regular family of triangulation of Ω, compatible

with the boundary decomposition ;

3) k > 0 - time step ;

4) N ∈ N∗, tn = nk, fn = f (tn) for all 0 ≤ n ≤ N ;



3) Skh
n wkh = k

n∑′

j=0

wkh
j + uh

0 , where a prime indicates the first

and last terms in the summation are to be halved ;

4) uh
0 ∈ V h - a finite element approximation of u0.

Problem Pkh
V . Find the discrete velocity field wkh = {wkh

n }n≥0 ⊂
V h such that

(Awkh
n , vh −wkh

n )V + ϕ(Skh
n wkh, vh)− ϕ(Skh

n wkh, wkh
n )

+j(wkh
n , vh)− j(wkh

n , wkh
n ) ≥ (fn, v

h −wkh
n )V ∀vh ∈ V h.



Main results

1) existence and uniqueness of the discrete solution under assump-

tion of Theorem 3 ;

2) error estimate of the form

max
0≤n≤N

‖wn −whk
n ‖V ≤ c

(
h + k2

)
,

provided that k is sufficiently small, under additional regularity of

the solution.



Remark 3. The fully discrete approximation of the displacement

field u of the frictional contact problem P , denoted {ukh
n }n≥0, is

given by

ukh
n = k

n∑′

j=0

wkh
j + uh

0.

Then, an estimate of the form

max
0≤n≤N

‖un − ukh
n ‖V ≤ c

(
h + k2

)

was obtained.
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Fig. 2 – Initial configuration of the two-dimensional example.



Numerical example

Ω = (0, L1)× (0, L2) ⊂ R2 with L1, L2 > 0,

(Aτ )αβ = µ1(τ11 + τ22)δαβ + µ2ταβ,

(Bτ )αβ = Eκ
1−κ2(τ11 + τ22)δαβ + E

1+κταβ,

1 ≤ α, β ≤ 2, ∀ τ ∈ S2, where µ1 and µ2 are viscosity constants,

E and κ are Young’s modulus and Poisson’s ratio of the material,

and δαβ denotes the Kronecker symbol.

g(‖u̇τ‖) = [(a− b)× e−α‖u̇τ‖ + b] with a, b, α > 0, a ≥ b.



For computation we have used the following data :

L1 = 1 m, L2 = 0.5 m,

µ1 = 0.05N/m, µ2 = 0.1N/m, E = 1N/m, κ = 0.3,

f 0 = (0, 0)N/m2, f 2 =

{
(0, 0) N/m on {1} × [0, 0.5],

(0,−0.3) N/m on [0, 1]× {0.5},

a = 0.003, b = 0.001, α = 100, u0 = 0m.



We use :

- uniform meshes, obtained by dividing the interval [0,1] into 1/h

equal parts in both x1 and x2 directions ;

- uniform partitions of the time interval [0, 1] ;

- the numerical solution corresponding to h = 1/256 and k =

1/256 as the “exact” solution in computing the errors of the nume-

rical solutions. This discretization corresponds to a problem with

132354 degres of freedom and the simulation runs in around 109

hours of CPU time.



Fig. 3 – Deformed mesh and contact interface forces on Γ3.
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Fig. 5 – Tangential stresses on Γ3.
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Open questions

a) Is the smallness assumption Lg < L0 an intrinsic feature of the

model PV or it represents only a limitation of our mathematical

approach ?

b) Find a reliable estimate of the critical value L0.

c) Regularity results for the solution of Problems PV .

d) Extension of the results in the case of unilateral contact condi-

tions.

e) Extension of the results in the dynamic case.
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