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1 Financial markets

Stochastic processes (in particular martingales, stochastic calculus and

stochastic differential equations): fundamental tool in problems from

financial mathematics to model the trading of risky assets (securities)

in discrete and continuous time

M. Black and F. Scholes (1973): the most famous financial model in con-

tinuous time (They were awarded with the Nobel price in economy).

They derived an explicit formula (option pricing) for the price of an Euro-

pean call on a stock paying no dividends and constructed a perfect hedge-

able replicating strategy.

A brief description of the Black-Scholes model (European call option):

Assume that at time t = 0 we (the buyer, holder) sign a contract with

the seller (writer) which gives us the right to by (but not the obligation),

at a specified time T (maturity, expiration time) one share of stock at a

specified price K (exercise, strike price).

At maturity , if the price ST of the stock is below to the exercise price, the

contract is worthless to us; on the other hand if ST > K we can exercise

our option (i.e., buy one share at the preassigned price K) and then sell

the share immediately in the market for ST .

In the last case the gain from this operation will be equal to ST −K.

All combined, we can say that the buyer’s gain is fT = (ST −K)+ .

Of course, one must pay certain premium CT for the acquisition of this

financial instrument, so that the net profit of the buyer of the call option

is fT − CT .

The buyer purchasing the option can simply wait till the maturity date T,

watching the dynamics of the pricess (St)0≤t≤T .

The position of the option writer is much more complicated because he

must bear in mind his obligation to meet the terms of the contract, which

requires him to not merely contemplate the changes in the pricess, but to

use all financial means available to him to build a portfolio of securities
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that ensures the final payment fT .

If an option can be shown at an arbitrary (random!) instant τ ≤ T, then

we call it an option of American type.

In practice, most options are American; this gives the buyer more freedom,

allowing him to choose the exercise time τ.

In some sene the two types of options are equivalent in certain sense (the

optimal exercise time τ of an American option is equal to T ).

There exist several types of other options: exotic, asian, etc.

Central questions

1. What is the ’fair” price CT (option pricing)

2. What the seller do to carry out the contract (hedging problem).

Mathamatical framework

Consider a financial market with d + 1 assets:

one is riskless (bond, bank account, money market account)

d are risky (stoks)

being subject to random perturbations, so they have a high degree of un-

certaintly

The assets are traded continuuously in a period of time T.

Let (Wt)t∈[0,T ] =
{(
W

(1)
t , ...,W

(m)
t

)}
t∈[0,T ]

be a m-dimensional Brownian

motion defined on a probability space (Ω,F , P ) (represent the noise or the

random perturbation)

We define Ft as the σ-algebra generated by (Ws)s≤t and we assume that

FT = F .
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Definition 1.1. A financial market with d + 1 assets is a system(Bt)t∈[0,T ] ,
(
S

(1)
t

)
t∈[0,T ]

, ...,
(
S

(d)
t

)
t∈[0,T ]

 ,
where:

(a) (Bt)t∈[0,T ]is a random process (the bond), Bt : (Ω,F , P ) −→ R, with

B0 = 1 for simplicity, and

Bt = 1 +
∫ t
0
r(s)Bsds, t ∈ [0, T ] , (1)

with {r(t)}t∈[0,T ] a random process (interest rate process), so that

Bt = exp
{∫ t

0
r(s)ds

}
.

(b) (St)t∈T =
{(
S

(1)
t

)
t∈T

, ...,
(
S

(d)
t

)
t∈T

}
is a nonnegative d-dimensional

process of the prices of risky assets given by

dSt = g(t)dt +G(t)dW (t),

i.e.,

St = s0 +
∫ t
0
g(s)ds +

∫ t
0
G(s)dWs, (2)

where:

(a) s0 = (s1, ..., sd) is a vector from Rd(initial prices) and g,G are some

stochastic processes of corrresponding dimensions.

Componentwise (2) writes as

dS
(i)
t = gi(t)dt +

m∑
j=1

gi,j(t)dW
(j)
t , 1 ≤ i ≤ d. (3)

The process

S̃
(i)
t = S

(i)
t exp

{
−

∫ t
0
r(s)ds

}
,

is known as the discounted value of the i-th stock.

Therefore the random vector
(
Bt, S

(1)
t , . . . , S

(d)
t

)
represents the prices of

all d + 1-assets at time t.

Depending of the form of interest rates of the pricess or the assets we obtain

examples of known financial markets.
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In the case of continuous liniar model

dSt = µ(t)Stdt + σ(t)StdW (t),

µ(t) is the mean rate or return process (represents the expected evolution

of the stocks prices),

σ(t) is known as the volatility process.

Black-Scholes: r, µ, σ are deterministic

Definition 1.2. (a) A financial strategy (portfolio) is a system(
ft, f

(1)
t , ..., f

(d)
t

)
t∈[0,T ]

, with ft, f
(i)
t measurable and Ft-adapted processes.

(b) The value of portfolio at time t correspnding to π is

V π
t = ftBt +

d∑
i=1
f

(i)
t S

(i)
t , t ∈ [0, T ] , (4)

the discounted value is

Ṽ π
t = ft +

d∑
i=1
f

(i)
t S̃

(i)
t , t ∈ [0, T ] .

A natural condition we should impose on the strategy is the self-financing

condition,

dV π
t = ftdBt +

d∑
i=1
f

(i)
t dS

(i)
t ,

or equivalently,

dṼ π
t =

d∑
i=1
f

(i)
t dS̃

(i)
t , t ∈ [0, T ] . (5)

The self-financing property means that the stocks are traded at some dis-

crete random times, so between the instants of tradings the variation of the

portfolio value is due only to the changes in the assets prices; there are no

withdraws of money and only the money gained by following the strategy

can be reinvested.
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If α ≥ 0, we say that the self-financing strategy π is α−admisible if

V π
t ≥ −α a.s. for alll t this means that it must be a limit when borrowing

money that creditors accept.

Denote
∏
α the α−admisible strategies and

∏
+ =

⋃
α≥0

∏
α.

Arbitrage: π ∈ ∏
+ such that V π

0 = 0, V π
t ≥ 0 and P (V π

T > 0) > 0 (free

lunch with vanishing risk).

We interpret the arbitrage as a strategy which allows someone who doesn’t

invest anything to gain something, with a positive probability.

If there is not arbitrage the financial market is called viable ( fair, rational

market, no riskless profits).

Contigent claim (derivative security): any nonnegatibe bounded random

variable which is FT -measurable ( h = (ST − K)+ is the case of Black-

Scholes model).

Complet financial market: if for any contigent claim h there is a π ∈∏
+ such that V π

T = h ( every derivative security can be hedged).

Comment: A very surprising and conforting fact is that there exists

a interplay between the above economic concepts and the theory of

martingales.

Martingale measure (risk neutral probability measure): any probability

measure P̃ which is equivalent with P and for which the discounted pricess

are martingales.

The complete answer to the two central questions:

1. What is the ’fair” price CT (option pricing)

2. What the seller do to carry out the contract (hedging problem).
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Theorem (first fundamental theorem of asset pricing). A financial

market is viable if and only if there exist a martingale measure.

Theorem (second fundamental theorem of asset pricing). A finan-

cial market is complete if and only if there exist a unique martingale

measure.

Corollary. The liniar financial market (with r, µ, σ adapted and bounded

processee) is viable and complete.

In particular the Black-Scholes model is viable and complete.

Let x ≥ 0 (inicial capital), h contigent claim.

A (x, h)-hedging strategy: π ∈ ∏
+ with

V π
0 = x, V π

a ≥ h.

Denote by SA(x, h) the family of all (x, h)-hedging strategies.

We define the fair price of the option h as

C(h) = inf {x ≥ 0 : SA(x, h) 6= ∅} . (6)

Remark. It is clear that the above formula realizes the idea of satisfying

both the seller (he can attain the claim) and also the buyer (in a certain

sense he pays a minimal premium to the seller).
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Theorem 1.3. Under ”smooth” conditions

C(h) = EP̃

(
he−

∫ T
0 r(s)ds

)
, (7)

and there exists a strategy π0 ∈
∏

0 such that

V π0
0 = C(h), V π0

T = h (8)

Theorem 1.4. If the contigent claim h has the form h = f (ST ), with

f : R −→ R+ measurable and EP̃ (h) = EP (hZa) <∞. then

V π0
t = F (t, St), (9)

F (t, x) = e−
∫ T
t r(u)duEP̃

f
xe

∫ T
t σ(u)dW̃u+

∫ T
t

(
r(u)−σ2(u)

2

)
du

 , t ∈ [0, T ] , x ∈ R,

(10)

and the fair price is

C(h) = F (0, s0). (11)
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Theorem 1.5 (Formula Black-Scholes). For a call option f (x) =

(x−K)+,

F (t, x) = Φ(α− a1)x−Ke−
∫ T
t r(u)duΦ(−a1), (12)

Φ(s) =
1√
2π

∫ x
−∞ e

−y2
2 dy, α =

√∫ T
t
σ2(u)du,

β = e−
∫ T
t r(u)du, a1 =

ln Kβ
x

α
+
α

2
.

In particular

C
(
(ST −K)+

)
= Φ(α− a1)s0 −Ke−

∫ T
0 r(u)duΦ(−a1). (13)

Remark. An important reason for which the Black-Merton-Scholes model

was succeffuly is due to the fact that the results depend on only one pa-

rameter which is not directly observable, which is the volatility σ (for its

estimation one can apply statistical methods).
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2 Motivation from finance

Recall that the clasical Black-Scholes model has the dynamics the price of

risky asset of the form

dSt = St (µdt + σdWt) , t ∈ [0, T ] , (14)

where W is a standard Bm ( the randomness of the stock price is due to

W ).

Its integral form is given by the lineat Itô equation

St = s0 + µ
∫ t
0
Ssds + σ

∫ t
0
SsdWs, (15)

with the explicit solution is given by

St = s0 exp

µt + σWt −
σ2

2
t

 . (16)

The second integral in (15) is the classical Itô integral.

Traditionally one assumes tthat there are no dividents, no transaction costs,

same interest rate r for lending and saving on the bond.

Problems. The Black-Scholes pricing model is very satisfactory from the

theoretical point of view.

Claims can be priced fairly and (in principle) one can even colculate the

corresponding hedging portfolios and there are no arbitrage opportunities.

However, there is a problem with this model.

Let 0 = t0 < t1 < .... < tn = T be a partition.

The model stipulates that the log-returns

log
Stk
Stk−1

=

µ− σ2

2

 (tk − tk−1) + σ
(
Wtk −Wtk−1

)
,

are independent stationary normal random variables (due to the similar

properties of W ).
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The are empirical studies (of financial time series) indicating that the log-

returns are not independent neither stationary (even they are not Gaussian:

we ignote in what follows this fact).

To overcome the first critical poins (non-independence, but preserving sta-

tionarity) of the log-returns it has been proposed that one should replace

the Bm by a fractional Brownian motion (fBm for short) which captures

the long-range dependence of the randomness. The first one to suggest this

was Mandelbrot in the late sixties.

For the second critical point (nonindependence and nonstationarity) we

propose the so called sub-fractional Brownian motion (sfBm).

Both above mentioned processes are not semimartingales and therefore

the classical stochastic calculus does not apply.

A new approach to define the stochastic integral in (15) is necessary.
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3 Processes with long-range dependence:
fractional and sub-fractional Brownian
motions

A stochastic process (Xt)t≥0 exhibit long-range dependence if, for every

0 ≤ u < v ≤ s < t,

cov(Xu −Xv, Xs+τ −Xt+τ ) ∼ r(u, v, s, t)τ−α as τ →∞,

for some function r(u, v, s, t) and α ∈ (0, 1) , that is the dependence be-

tween Xu −Xv and Xs+τ −Xt+τ decays slowly as τ →∞.

Another property we need is self-similaruty.

The centered process (Xt)t≥0 is α−self-similar if (Xt)t≥0 and (a−αXt)t≥0 have

the same distribution for any a > 0.
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3.1 General properties

The fractional Brownian motion (fBm for short) is the best known and

most used process with long-dependence property for models in telecom-

munication, turbulence, finance, etc. This process was first introduced

by Kolmogorov (1940) and later studied by Mandelbrot and his cowork-

ers (1968). The fBm is a continuous centered Gaussian process
(
Bk
t

)
t∈R

,

starting from zero, with covariance

CBk(s, t) := E
(
Bk
tB

k
s

)
=

1

2

(
|s|2k+1 + |t|2k+1 − |t− s|2k+1

)
, s, t ∈ R,

(17)

where k ∈
(
−1

2,
1
2

)
(H = k+ 1

2 is called Hurst parameter). The case k = 0

corresponds to the Brownian motion.

The self-similarity (with α = H) and stationarity of the increments

are two main properties for which fBm enjoyed success as a modeling tool.

The fBm is the only continuous Gaussian process which is self-similar and

has stationary increments.

An extension of Bm which preserves many properties of the fBm, but

not the stationarity of the increments, is so called sub-fractional Brown-

ian motion (sfBm for short), i.e.,a continuous Gaussian process
(
Skt

)
t≥0

,

starting from zero, with covariance

CSk(s, t) := E
(
Skt S

k
s

)
= s2k+1+t2k+1−1

2

[
(s + t)2k+1 + |t− s|2k+1

]
, s, t ≥ 0.

(18)

Next we assume k 6= 0.

The sfBm has properties analogous to those of fBm (see Bojdecki-Gorostiza-

Talarczyk: SPL-2004, CT-Stochastics-2007):

(i1) Self-similarity: For each a > 0 the processes
(
Skat

)
t≥0

has the same

distribution as
(
ak+

1
2Skt

)
t≥0

.

(i2) Covariance: For all s, t ≥ 0,

CSk(s, t) > 0,
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CSk(s, t) > CBk(s, t) if k ∈
−1

2
, 0

 ,
CSk(s, t) < CBk(s, t) if k ∈

0,
1

2

 .
(i3) Non-stationarity of increments: For all s ≤ t,

E
[∣∣∣∣Skt − Sks

∣∣∣∣2
]

= −22k(t2k+1 + s2k+1) + (t + s)2k+1 + (t− s)2k+1 ,

E
(∣∣∣∣Skt

∣∣∣∣2
)

= (2− 22k)t2k+1,

(t− s)2k+1 ≤ E
[∣∣∣∣Skt − Sks

∣∣∣∣2
]
≤ (2− 22k) (t− s)2k+1 if k ∈

−1

2
, 0

 ,
(2− 22k) (t− s)2k+1 ≤ E

[∣∣∣∣Skt − Sks
∣∣∣∣2
]
≤ (t− s)2k+1 if k ∈

0,
1

2

 .
(i4) Correlation of increments and long-range dependence: For 0 ≤
u < v ≤ s < t,define

Rk
u,v,s,t = E

[(
Bk
v −Bk

u

) (
Bk
t −Bk

s

)]
,

Ck
u,v,s,t = E

[(
Skv − Sku

) (
Skt − Sks

)]
.

Then

Ck
u,v,s,t =

1

2

[
(t + u)2k+1 + (t− u)2k+1 + (s + v)2k+1 + (s− v)2k+1

− (t + v)2k+1 − (t− v)2k+1 − (s + u)2k+1 − (s− u)2k+1
]
,

Rk
u,v,s,t < Ck

u,v,s,t < 0 if k ∈
−1

2
, 0

 ,
0 < Ck

u,v,s,t < Rk
u,v,s,t if k ∈

0,
1

2

 .
For u ≥ 0, r > 0 let ρBk(u, r) and ρSk(u, r) denote the correlation coeffi-

cients of Bk
u+r −Bk

u, B
k
u+2r −Bk

u+r and Sku+r − Sku, S
k
u+2r − Sku+r.

Then

|ρSk(u, r)| ≤ |ρBk(u, r)| .
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and we have the long-range dependence

Rk
u,v,s+τ,t+τ ∼ k(2k + 1) (t− s) (v − u) τ 2k−1 as τ →∞,

Ck
u,v,s+τ,t+τ ∼ k(2k + 1)(1− 2k)

(
v2 − u2

)
τ 2(k−1) as τ →∞.

Therefore the covariance of increments of sfBm over non-overlapping inter-

vals have the same sign but are smaller in absolute value than those of fBm

and the increments on the intervals [u, u + r] , [u + r, u + 2r] are more

weakly correlated than those of fBm. Moreover the long-range dependence

decays at a higher rate for sfBm than for fBm (these properties justifies

the name sfBm).

(i5) Short memory: For each a > 0,∑
n≥a+1

cov
(
Ska+1 − Ska , S

k
n+1 − Skn

)
<∞.

The above mentioned properties make sfBm a possible candidate for models

which involve long-dependence, self-similarity and non-stationarity of the

increments.

(i6) S
k is not a Markov process.

(i7) Hölder paths: For each ε < k + 1
2 and each T > 0 there exists a

random variable Kε,T such that∣∣∣∣Skt − Sks
∣∣∣∣ ≤ Kε,T |t− s|k+

1
2−ε , s, t ∈ [0, T ] , a.s.

(i8) Variation: For each T > 0,

n−1∑
i=0

∣∣∣∣∣Sk(i+1)T
n

− SkiT
n

∣∣∣∣∣
p
n→∞−→ 0 if p >

2

2k + 1
, in L2

n−1∑
i=0

∣∣∣∣∣Sk(i+1)T
n

− SkiT
n

∣∣∣∣∣
p
n→∞−→ ρ 2

2k+1
T if p =

2

2k + 1
, in L2

n−1∑
i=0

∣∣∣∣∣Sk(i+1)T
n

− SkiT
n

∣∣∣∣∣
p
n→∞−→ ∞ if p <

2

2k + 1
, in p

where ρp = E (|N(0, 1)|p) .
Such a result for fBm is obtained mainly by using self-similarity and sta-

tionarity of the increments (in particular ergodic theorem). For sfBm the

lack of stationarity of the increments is replaced by linear regression.
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(i9) If W is a Brownian motion independent of Sk and k > 1
4, then the

process Sk +W is a semimartingale equivalent in law with W .

(i10) The sfBm Sk is not a semimartingale.
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3.2 Pathwise integral with respect to sfBm

Since the fBm amd sfBm are not semimartingales, one cannot use the Itô

theory to define stochastic integrals with respect to the..

However, one can define a pathwise, i.e. ω by ω, integrals as a refinement

of the Riemann-Stieltjes integrals using p−variation.

For functions of one variable the Riemann-Stieltjes integral
∫T
0 f (t)dg(t)

was extended to functions with unbounded variation, essentially by us-

ing fractional integrals or p-variation (see Dudley-Norvaisa-1998, 1999,

Feyel-Pradelle-1999, Kondurar-1937, Mikosch-Norvaisa-2000, Young-1936

and Zähle-1998).

For a function f : [0, T ] → R a partition π : 0 = t0 < ... < tN = T and

p ≥ 1 we define the p-variation associated to π by

vp(f, π) =
∑
i
|f (ti)− f (ti−1)|p ,

Denote

v0
p(f ) = lim

|πn|→0
vp(f, πn), vp(f ) = sup

π
vp(f, π),

for all homogeneous partitions πn = (iT δn)i , δn −→ 0.

We say that f has finite p-variation if v0
p(f ) < ∞ and bounded p-

variation if vp(f ) <∞.

Remark. A function f : [0, T ] −→ R has bounded p-variation if and only

if f = g ◦h, where h : [0, T ] −→ R is bounded nondecreasing nonnegative

function and g : [h(0), h(T )] −→ R is 1
p-Hölder.

The family of functions with bounded p-variation is denoted by Wp.

We denote by H[0,T ],α the class of all α-Hölder functions f : [0, T ] −→ R

with f (0) = 0 and define

‖f‖[0,T ],α = sup
u 6=v,0≤u<v≤T

|f (u)− f (v)|
(v − u)α

.
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Remark. (Young-1936, Dudley-Norvaisa-1999). If f ∈ Wp, g ∈ Wq,
1
p + 1

q > 1 and f, g have no common discontinuities, then the Stieltjes

integral
∫T
0 f (t)dg(t) exists as limit of the corresponding Riemann-Stieltjes

sums.

In particular if f is α-Hölder, g is β-Hölder with α + β > 1, then the

Stieltjes integral
∫ t
0 f (s)dg(s) exists and is β-Hölder. Moreover for every

0 < ε < α + β − 1,∣∣∣∣∣
∫ T
0
f (s)dg(s)

∣∣∣∣∣ ≤ C(α, β) ‖f‖[0,T ],α ‖g‖[0,T ],β T
1+ε, (19)

(see Feyel-Pradelle-1999).

Concerning the variation of sfBm we have the following result.

Proposition 3.1

v0
p(S

k) = 0, vp(S
k) <∞ if p >

2

2k + 1
, (20)

v0
2

2k+1
(Sk) = v 2

2k+1
(Sk) = ρ 2

2k+1
T, (21)

v0
p(S

k) = vp(S
k) = ∞ if p <

2

2k + 1
. (22)

Remark. From the above proposition it follows that a.s. Sk ∈ Wp if

and only if p ≥ 2
2k+1.

Moreover, for every process (ut)t∈[0,T ] with paths a.s. in Wq with q <
2

1−2k , the Riemann-Stieltjes integral
∫ t
0 urdS

k
r is well defined a.s. In par-

ticular if u has α-Hölder paths for some α > 1−2k
2 , then the Riemann-

Stieltjes integral
∫ t
0 urdS

k
r is well defined and has β–Hölder paths, for every

β < k + 1
2.

Since every Riemann-Stieltjes integral obeys the change of variable formula,

we have the following result.
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Theorem 3.2. If F (t, x) ∈ C1 and the mapping t −→ ∂F
∂x (t, Skt ) ∈ Wq

with q < 2
1−2k , then for all s, t ∈ [0, T ] ,

F (t, Skt )− F (s, Sks ) =
∫ t
s

∂F

∂x
(r, Skr )dS

k
r +

∫ t
s

∂F

∂t
(r, Skr )dr. (23)

Remark. (a) The pathwise integral may not exist : for example for

k ∈
(
−1

2, 0
)

the integral
∫T
0 S

k
t dS

k
t does not exists. Indeed if we assume

that the integral exists, then using (22) we obtain

∞ = v0
2(S

k) = lim
n→∞

∑
i

∣∣∣∣∣SkiT
n
− Sk(i−1)T

n

∣∣∣∣∣
2

= lim
n→∞

∑
i
SkiT

n

(
SkiT

n
− Sk(i−1)T

n

)

− lim
n→∞

∑
i
Sk(i−1)T

n

(
SkiT

n
− Sk(i−1)T

n

)
=

∫ T
0
Skt dS

k
t −

∫ T
0
Skt dS

k
t = 0.

(b) If the pathwise integral exists, then it may have not zero expectation:

for example if k ∈
(
0, 1

2

)
, by using (23) we obtain

E
(∫ T

0
Skt dS

k
t

)
=

1

2
E

(∣∣∣∣SkT
∣∣∣∣2
)

= (1− 22k−1)T 2k+1.

Remark. We have similar results for fBm.
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4 Anticipating calculus

4.1 Multiple Wiener-Itô integrals

Let (Xt)t≥0 be a real valued centered Gaussian process defined on a prob-

ability space (Ω,F , P ) and let E be the family of elementary deterministic

functions, i.e., of functions of the form f =
∑n−1
j=1 fj1[tj ,tj+1), fj ∈ R and

t0 = 0 < t1 < ... < tn. We assume that F = B (Xt : t ∈ T ) .

For f ∈ E we define

I(f ) =
n−1∑
j=1

fj
(
Xtj+1 −Xtj

)
, (24)

and the symmetric bilinear form on E ,

〈f, g〉X = E (I(f )I(g)) .

The closure of E with respect to the above inner product is denoted by

ΛX and we call it the domain of the Wiener integral. For f ∈ ΛX we

denote by
∫
T f (t)dXt orX(f ) the extension by continuity of (24) to ΛX and

we call it the Wiener integral of f with respect to X.

The description of the Hilbert space ΛX and the explicit expression of

X(f ) is not easy in the most cases.

In the case of Bm ΛX = L2(R+) and
∫
T f (t)dXt is the standard Wiener

integral.

The process {X(f )}f∈ΛX
is a centered Gaussian process, the so called an

isonormal process.

For an integer q ≥ 1 we denote by Λ�qX the symmetric tensor prod-

uct equipped with the modified norm
√
q! ‖.‖Λ

�q
X
. In some cases ΛX =

L2 (A,A, µ) , where µ is a σ-finite and non-atomic measure and in this

context Λ�qX can be identified with L2
s (Aq,A⊗q, µ⊗q) , the space of sym-

metric square integrable functions on Aq.

Next, for any unexplained concept or result on Malliavin calculus, the

reader is referred to Nualart (2006).
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For every q ≥ 1, we write Hq for the qth Wiener chaos, which is the closed

subsace of L2 (Ω,F , P ) generated by Hq (X (h)) , h ∈ ΛX , ‖h‖ΛX
= 1,

where Hq is the Hermite polynomial of order q , defined as

Hq(x) = (−1)qe
x2
2
dq

dxq
e−

x2
2 , x ∈ R, q ≥ 1,

For any q ≥ 1, the mapping

Iq(h
⊗q) = q!Hq (X (h)) ,

can be extended to a linear isometry between Λ�qX equipped with the mod-

ified norm
√
q! ‖‖Λ

�q
X

and Hq.

For f ∈ Λ�qX we denote by Iq(f ) the multiple stochastic integral of f with

respect to X obtained by the above isometry.

Recall that in the case ΛX = L2 (A,A, µ) , the random variable Iq(f )

agrees with the multiple Wiener-Itô integral (by convention H0 = R).

For q = 0 we put I0(c) = c ∈ R.
If (ek)k≥1 is a CONS in ΛX and f ∈ Λ�qX , g ∈ Λ�qX , then for any

r = 0, ..., p ∧ q, we define the rth contraction f ⊗r g as the element of

Λ
�(p+q−2r)
X defined as

f ⊗r g =
∞∑

i1,...,ir=1
〈f, ei1 ⊗ ...⊗ eir〉Λ⊗r

X
〈g, ei1 ⊗ ...⊗ eir〉Λ�r

X
.

In the special case where

ΛX = L2 (A,A, µ) , one has for 1 ≤ r ≤ p ∧ q,
f ⊗r g =∫
Ar f (t1, ..., tp−r, s1, ..., sr)g(tp−r+1, ..., tp+q−2r, s1, ..., sr)dµ(s1)...dµ(sr),

and f ⊗0 g = f ⊗ g.

The following product (multiplication) formula is very useful: if f ∈
Λ�pX , g ∈ Λ�qX , then

Ip(f )Iq(g) =
p∧q∑
r=0

r!Cr
pC

r
qIp+q−2r (f ⊗r g) . (25)

Chaotic decomposition. It is well known that the space L2 (Ω,F , P ) is

the orthogonal su of the spaces Hq, i.e., every Z ∈ L2 (Ω,F , P ) admits
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the chaos expansion

Z =
∞∑
q=0

Iq(fq), (26)

where f0 = E(Z) and the kernels (fq)q≥1 , fq ∈ Λ�qX are uniquely deter-

mined.
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4.2 Basic of Malliavin calculus

Define

S : Z = g (X(h1), ..., X(hn)) , g ∈ C∞
c , hi ∈ ΛX .

Malliavin derivative:

DZ =
n∑
i=1

∂g

∂xi
(X(h1), ..., X(hn))hi,

and by iteration DqZ as an element of L2(Ω,Λ�qX ). For q, p ≥ 1, Dq,p

denotes the closure of S with respect to the norm

‖Z‖pq,p = E (|Z|p) +
q∑
i=1
E

∥∥∥∥DiZ
∥∥∥∥p
Λ�i

X

 .
If Z is as in (26), then

Z ∈ D1,2 ⇔ E
(
‖DZ‖2

ΛX

)
=

∞∑
q=1

q ‖Iq(fq)‖2
L2(Ω) <∞,

and in particular, if ΛX = L2 (A,A, µ) ,

DtZ =
∞∑
q=1

qIq−1(fq(., t)) ∈ L2 (A× Ω) .

Chain rule: If g ∈ C1
b or g is a polynomial in d variables and Z =

(Z1, ..., Zd) , Zi ∈ D1,2, then

Dg(Z) =
d∑
i=1

∂g

∂xi
(Z)DZi.

Skorohod integral (anticipating integral, divergence operator): δ is the

adjoint of D :

u ∈ L2(Ω,ΛX) ∈ Dom(δ) ⇔
∣∣∣∣E (

〈DZ, u〉ΛX

)∣∣∣∣ ≤ cu ‖Z‖L2(Ω) ,∀Z ∈ D1,2.

Duality relation (integration by parts formula):

E (Zδ(u)) = E
(
〈DZ, u〉ΛX

)
,∀ Z ∈ D1,2.
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4.3 The case of sub-fractional Brownian mo-
tion

Let f : [0, T ] −→ R be a measurable application and α ∈ R, σ, η ∈ R.

We define the Erdély-Kober-type fractional integral

(
Iα
T−,σ,ηf

)
(s) =

σsση

Γ(α)

∫ T

s

tσ(1−α−η)−1f(t)

(tσ − sσ)1−α dt, s ∈ [0, T ] , α > 0, (27)

(
Iα
T−,σ,ηf

)
(s) = sση

(
− d

σsσ−1ds

)n

sσ(n−η)
(
Iα+n
T−,σ,η−nf

)
(s), s ∈ [0, T ] , α > −n, (28)

(
Iα
0+,σ,ηf

)
(s) =

σs−σ(α+η)

Γ(α)

∫ s

0

tση+σ−1f(t)

(sσ − tσ)1−αdt, s ∈ [0, T ] , α > 0, (29)

(
Iα
0+,σ,ηf

)
(s) = s−σ(α+η)

(
d

σsσ−1ds

)n

sσ(α+n+η)
(
Iα+n
0+,σ,ηf

)
(s), s ∈ [0, T ] , α > −n.

(30)

We introduce the following kernels

n(t, s) =

√
π

2k
Ik
T−,2,1−k

2

(
uk1[0,t)

)
(s) , (31)

ψ(t, s) =
sk

Γ(1− k)

[
tk−1

(
t2 − s2

)−k − (k − 1)
∫ t
s

(
u2 − s2

)−k
uk−1du

]
1(0,t) (s) .

(32)

Denote by Λsf
k,T the domain of the Wiener integral for sub-fBm.

Remark. The function ψ(t, .) ∈ Λsf
k,T and satisfies (uniquely) the equality

√
π

2k
Ik
T−,2,1−k

2

(
ukψ(t, .)

)
(s) = 1(0,t). (33)
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Theorem 4.1 (Dzhaparidze-Van Zanten-2004, CT-2009). The process

W k
t =

∫ t
0
ψ(t, s)dSks ,

is the unique Brownian motion such that

Skt = ck
∫ t
0
n(t, s)dW k

s , t ∈ [0, T ] , (34)

c2k =
Γ (2k + 2) sin π

(
k + 1

2

)
π

. (35)

Moreover Sk and W k generate the same filtration.

Theorem 4.2 (CT-2009). (i) If −1
2 < k < 0, then the space

Λsf
k,T , 〈., .〉Λsf

k,T

 ,
where

Λsf
k,T =f : [0, T ] → R : ∃ϕf ∈ L2 ([0, T ]) , I−k

T−,2,k+1
2

 2k√
π
ϕf

 (t) = tkf (t)

 ,
(36)

〈f, g〉
Λ

sf
k,T

= c2k
∫ T
0
ϕf(t)ϕg(t)dt, (37)

is the domain of the Wiener integral and

∫ T
0
f (t)dSkt = ck

∫ T
0
ϕf(t)dW

k
t . (38)

(ii) If 0 < k < 1
2, then the space

Λsf
k,T , 〈., .〉Λsf

k,T

 , where

Λsf
k,T =

{
f ∈ D (0, T )′ : ∃f ∗ ∈ S ′, f ∗ odd, supp(f ∗) ⊂ [−T, T ]

f ∗ |[0,T ]= f,
∫
R

∣∣∣∣f̂ ∗(x)
∣∣∣∣2 |x|−2k dx <∞

}
, (39)

〈f, g〉
Λ

sf
k,T

=
c2k
2

∫
R
f̂ ∗(x)ĝ∗(x) |x|−2k dx, (40)

is the domain of the Wiener integral.

If we define

|Λ|sfk,T =
{
f : [0, T ] −→ R : Ik

T−,2,1−k
2

(
uk |f |

)
∈ L2 ([0, T ])

}
, (41)
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then we have the strict inclusion |Λ|sfk,T ⊂ Λsf
k,T and

∫ T
0
f (t)dSkt = ck

∫ T
0
Ik
T−,2,1−k

2


√
π

2k
ukf

 (t)dW k
t , f ∈ L2 ([0, T ]) . (42)

Moreover, if k ∈
(
0, 1

2

)
, f ∈ |Λ|sfk,T ,

〈f, g〉
Λ

sf
k,T

= c2k

〈
Ik
T−,2,1−k

2


√
π

2k
ukf

 , Ik
T−,2,1−k

2


√
π

2k
ukg

〉
L2([0,T ])

=
∫ T
0

∫ T
0
f (u)g(v)ϕk(u, v)dudv. (43)

ϕk(u, v) = k(2k + 1)
[
|u− v|2k−1 − (u + v)2k−1

]
.

Proposition 4.2. The inclusion Λf
k,T ⊂ Λsf

k,T holds.
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Theorem 4.4 (Prediction). For every 0 ≤ t ≤ T,

ŜT |t := E
[
SkT | FSk

t

]
= Skt +

∫ t
0

Ψt,T (u)dSku

= ck
∫ t
0
n(T, u)dW k

u . (44)

In particular (since n(T, u) > 0 on (0, T )) we have the equality FSk

t =

F Ŝk

t .

Denote

dk =
2k

ckΓ(1− k)
√
π
,

The process

Mk
t = dk

∫ t
0
s−kdW k

s , (45)

is called the sub-fractional fundamental martingale.

The following result is straightforward.

Lemma. For every 0 ≤ s ≤ t ≤ T,

cov
(
Sks ,M

k
t

)
= s, E

(∣∣∣∣Mk
t

∣∣∣∣2
)

=
d2
k

1− 2k
t1−2k.

In particular Mk
t −Mk

s is independent of FSk

s and FSk

s = FMk

s = FW k

s .

For f : [0, T ] → R with
∫T
0 f

2(s)s−2kds <∞ define the probability Qf by

dQf

dP
|FSk

t
= exp

∫ t
0
f (s)dMk

s −
1

2

∫ t
0
f 2(s)

〈
Mk

〉
s



= exp

∫ t
0
f (s)dMk

s −
d2
k

2

∫ t
0
f 2(s)s−2kds

 , (46)

and denote

(Ψkf ) (s) =
1

Γ(1− k)
Ik0+,2,−kf (s). (47)
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Theorem 4.5 (Girsanov). For f as above, the process

Skt −
∫ t
0

(Ψkf ) (s) ds, t ∈ [0, T ] ,

is a Qf−sfBm.

In particular if f ≡ a ∈ R it follows that the process
(
Skt − at

)
t∈[0,T ]

is

Qa−sfBm.
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4.4 Multiple sub-fractional integrals
and anticipating stochastic calculus for
sfBm

Multiple integrals w.r.t. fBm were introduced by Desgupta-Kallianpur-

PTRF-1999, and Duncan, Hu and Pasik-Duncan-SIAM J. Control Optim.-

2000 for the fBm. The techniques used in these papers involve Wick product

and reproducing kernel Hilbert space theory.

We study multiple fractional and subfractional integrals by using this trans-

fer principle from multiple Brownian integrals via a Gamma type operator.

Then the chaos form of the sub-fractional anticipating integral is consid-

ered.

We assume that k ∈
(
0, 1

2

)
.

For a function f : [0, T ]n → R we consider the n−dimensional form

Iα,nT−,σ,ηf of the Erdély-Kober-type fractional integrals (27),

(
Iα,nT−,σ,ηf

)
(s1, .., sn) =

 σ

Γ(α)


n

n∏
j=1

sσηj

×
∫ T
s1
..
∫ T
sn

n∏
j=1

t
σ(1−α−η)−1
j(
tσj − sσj

)1−αf (t1, .., tn)dt1..dtn, sj ∈ [0, T ] , α > 0. (48)

(
Iα,n0+,σ,ηf

)
(s) =

 σ

Γ(α)


n

n∏
j=1

s
−σ(α+η)
j

×
∫ s1
0
..
∫ sn
0

n∏
j=1

tση+σ−1
j f ((t1, .., tn)(

sσj − tσj
)1−α dt1..dtn, sj ∈ [0, T ] , α > 0. (49)

We shall denote by I0,k
n (f ) the multiple Wiener-Itô integral with respect

to W k and we introduce the space

|Λn|
Λ

sf
k,T

=
{
f : [0, T ]n → R : Ik,n

T−,2,1−k
2

(|f |) ∈ L2 ([0, T ]n)
}
.
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Definition. If f ∈ |Λn|sfk,T , f symmetric, then we define the multiple

sub-fractional integral of f with respect to Sk by

Ikn(f ) =

ck
√
π

2k


n

I0,k
n

Ik,n
T−,2,1−k

2

 n∏
j=1

ukjf


 , (50)

We have the equalities

‖f‖2
|Λn|sfk,T

:=
∥∥∥∥Ikn(f )

∥∥∥∥2
L2(Ω,F ,P )

=

ck
√
π

2k


2n ∥∥∥∥∥∥∥I

k,n

T−,2,1−k
2


 n∏
j=1

ukj

 f

∥∥∥∥∥∥∥
2

L2([0,T ]n)

=
∫
[0,T ]2n f (u1, ..., un)f (v1, ..., vn)

n∏
j=1

ϕk(uj, vj)dujdvj. (51)

Remark. Like in the fBm case the multiplication by an indicator function

can increase the norm in Λsf
k,T .

Indeed, for 0 < a < T and c ∈
[
1, Ta

]
define

fc,a = 1(0,a) − 1(a,ac), (52)

g(c) = 4− 22(k+1) − (2 + 22k)c2k+1 + 2(c + 1)2k+1 + 2(c− 1)2k+1.

Since

g′(1) = 2(2k + 1)(22k−1 − 2) < 0,

it follows that there exists x0 > 1 such that the function g in decreasing

on [1, x0] .

Then there exist a > 1 and 1 < c02 < c01 < x0 such that

‖fc,a‖Λ
sf
k,T
< 1, ∀c ∈

[
c01, x0

]
, (53)

‖fc,a‖Λ
sf
k,T
> 1, ∀c ∈

(
1, c02

]
.

In particular ∥∥∥∥fc,a1(0,t)

∥∥∥∥
Λ

sf
k,T

> 1, ∀t ∈
(
a, ac02

]
. (54)

We can now define the space
∣∣∣∣L2
k

∣∣∣∣ =
F ∈ L2 (Ω,F , P ) : F =

∞∑
n=0

Ikn(fn), fn ∈ |Λn|sfk , fn symmetric

 .
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Remark. Since |Λn|sfk,T is not complete,
∣∣∣L2
k

∣∣∣ is a strict subspace of

L2 (Ω,F , P ) .

Following the ideas of [21] we introduce the following

Definition. For F ∈
∣∣∣L2
k

∣∣∣ and t ∈ [0, T ] , we define the sub-fractional

quasi-conditional expectation of F with respect to FSk

t by

Ẽ
[
F | FSk

t

]
=

∞∑
n=0

Ikn(1(0,t)nfn), (55)

provided the series converges in L2 (Ω,F , P ) ,i.e.,
∞∑
n=1

n!
∥∥∥∥1(0,t)nfn

∥∥∥∥2|Λn|sfk,T

<∞. (56)

Remark. To see the difference between conditional expectation and quasi-

conditional expectation note that (see 44) for t ∈ (0, T ) ,

Ẽ
[
SkT | FSk

t

]
= Skt ,

E
[
SkT | FSk

t

]
= Skt +

∫ t
0

Ψt,T (u)dSku.

The sub-fractional quasi-conditional expectation need not exist as the next

result shows.
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Proposition 4.6. Consider the sequence of kernels fn = (n!)−
1
2 f⊗nc,a ,

where fc,a is given by (52).

Then the following statements hold:

(a) The random variable F =
∑∞
n=1 Ikn(fn) ∈

∣∣∣L2
k

∣∣∣ .
(b) For every t ∈

(
a, ac02

]
, with a, c02 defined in Remark 4.2, Ẽ

[
F | FSk

t

]
is

not well defined.

Definition. The random variable F =
∑∞
n=1 Ikn(fn) ∈

∣∣∣L2
k

∣∣∣ is sub-

fractional Malliavin differentiable if

Dk
tF =

∞∑
n=1

nIkn−1 (fn(., t)) , (57)

converges in
∣∣∣L2
k

∣∣∣ for a.e. t ∈ [0, T ] , i.e.,

∞∑
n=1

nn! ‖fn(., t)‖2

|Λn−1|sfk,T

<∞. (58)

The sub-fractional Clark-Ocone derivative at time t of F ∈
∣∣∣L2
k

∣∣∣ is de-

fined by

∇k
tF = Ẽ

[
Dk
tF | FSk

t

]
, (59)

provided F is sub-fractional Malliavin differentiable and the quasi-conditional

expectation exists, i.e.,
∞∑
n=1

nn!
∥∥∥∥1(0,t)n−1fn(., t)

∥∥∥∥2|Λn−1|sfk,T

<∞. (60)

.

The sub-fractional Clark-Ocone derivative need not exist as the next result

shows.
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Proposition 4.7. Consider the sequence of kernels fn = (nn!)−
1
2 f⊗nc,a ,

where fc,a is given by (52).

Then the following statements hold:

(a) The random variable F =
∑∞
n=0 Ikn(fn) is sub-fractional Malliavin

differentiable and∫
[0,T ]2

E
(∣∣∣∣Dk

sF
∣∣∣∣ ∣∣∣∣Dk

tF
∣∣∣∣)ϕk(s, t)dsdt <∞. (61)

(b) For every t ∈
(
a, ac02

]
, with a, c02 defined in Remark 4.2, Ẽ

[
F | FSk

t

]
is

not well defined.

Consider the set
∣∣∣∣Sch∣∣∣∣sf

k,T
of all measurable processes (ut)t∈[0,T ] such that:

(a) ut ∈
∣∣∣L2
k

∣∣∣ for a.e. t ∈ [0, T ] and

ut =
∞∑
n=0

Ikn (fn(., t)), (62)

with fn(., t) ∈ |Λn|sfk,T , fn ∈
∣∣∣Λn+1

∣∣∣sf
k,T .

(b) The following series is convergent
∞∑
n=1

(n + 1)! ‖|sym (fn)|‖2

|Λn+1|sfk,T

<∞.

Definition. For a process u ∈
∣∣∣∣Sch∣∣∣∣sf

k,T
define the chaos sub-fractional

Skorohod integral of u with respect to Sk by

δchk,T (u) :=
∞∑
n=0

Ikn+1 (sym (fn)) .

From (b) it follows that the previous converges in
∣∣∣L2
k

∣∣∣ .

Define
∣∣∣∣D1,2

k

∣∣∣∣ as the family of all F =
∑∞
n=1 Ikn(fn) ∈

∣∣∣L2
k

∣∣∣ such that

∞∑
n=1

nn! ‖|fn|‖2
|Λn|sfk,T

<∞. (63)
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Theorem 4.8 (Clark-Ocone representation formula). If F ∈
∣∣∣∣D1,2

k

∣∣∣∣
then the clark-Ocone derivative exists and satisfies

∇k
tF =

∞∑
n=1

nIkn−1

(
1(0,t)n−1fn (., t)

)
, (64)

∫
[0,T ]2

E
(∣∣∣∣∇k

sF
∣∣∣∣ ∣∣∣∣∇k

tF
∣∣∣∣)ϕk(s, t)dsdt <∞. (65)

Moreover, ∇kF is sub-fractional Skorohod integrable and the following

Clark-Ocone representation formula holds

F = E(F ) + δchk,T
(
∇kF

)
. (66)

Remark. A representation of a random variable F ∈
∣∣∣L2
k

∣∣∣ in the form

F = E(F ) + δchk,T (u) , (67)

need not be unique.

For example: By using the product formula it is easily see that we have

the relations (
SkT

)2
= δchk,T

(
SkT

)
+ (2− 22k)T 2k+1,(

SkT
)2

= δchk,T
(
2Sk.

)
+ (2− 22k)T 2k+1.
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Proposition 4.9. A representation of the form (67) with u adapted is

unique.

Remark. In (66) the integrand is adapted.

Proposition 4.10. For 0 < τ < σ and F ∈ L2
(
R,N(0, σ2)

)
define

GF
σ,τ (x) =

1√
2π (σ2 − τ 2)

∫
R
F (y)e

− (x−y)
2(σ2−τ2)

2

dy. (68)

If f ∈ |Λ|sfk,T , (a, b) ⊂ [0, T ] and
∥∥∥∥1(a,b)f

∥∥∥∥
Λ

sf
k,T

< ‖f‖
Λ

sf
k,T
, then for every

F ∈ L2

R,N(0, ‖f‖2
Λ

sf
k,T

)

 we have the equality

Ẽ
[
F

(
Ik1 (f )

)
| Skt : a ≤ t ≤ b

]
= GF

‖f‖
Λsf

k,T

,‖1(a,b)f‖Λsf
k,T

(
Ik1

(
1(a,b)f

))
.

(69)

Moreover, if F ∈ C1(R), F ′ ∈ L2

R,N(0, ‖f‖2
Λ

sf
k,T

)

 , then the follow-

ing relation holds

F
(
Ik1 (f )

)
= E

[
Ik1 (f )

]
+ δchk,T

GF ′

‖f‖
Λsf

k,T

,‖1(a,b)f‖Λsf
k,T

(
Ik1

(
1(0,t)f

))
f

 .
(70)

Remarks. (a) Note that the chaos sub-fractional Skorohod integral

has zero expectation (in contrast with the pathwise integral).

(b)Also, the Skorohod integral is the adjoint of the Malliavin derivative

(the divergence operation).

(c) Sometimes the Skorohod integral is called the Wick-Itô-Skorohod.

The reason is that in the case of Brownian motion the divergence coincides

with the extension od the Itô integral introduced by Skorohod.

Also, one can show that under some regularity assumptions, we have

δchk,T (u) = (L2) lim
∑
tk∈π

utk−1 �
(
Sktk −−Sktk−1

)
,
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where F �G is so-called Wick product, so that the Shorohod integral can be

considered as a limit of Riemann-Stieltjes sums if one replace the ordinary

product by the Wick product.

A different approach to introduce the Skorohod integral uses the white

noise analysis instead of Malliavin calculus (Bender).

(d) In fact, under regularity assumptions, the Riemann-Stieltjes integral is

a Skorohod integral plus a ”Malliavin trace”.

Comment. In the case of fBm (which is older then of sfBm) the concepts

and results are parallel. The approach with multiple integrals utilizes de-

terministic multiple Riemann-Liouville fractional integrals and derivatives

instead of Erdélyi-Kober type multiple fractional integrals.

5 Sub-fractional Black-Scholes model

Next we consider the sub-fractional Black-Scholes model.

Comment. The case of fractional Black-Scholes model uses similar

definitions and arguments.

In this model the bank account has the dynamics

dBt = rBtdt, 0 ≤ t ≤ T, B0 = 1, (71)

so that Bt = exp(rt) and the price of the risky asset has sub-fractional log

normal dynamics

dSt = µStdt + σStdS
k
t , 0 ≤ t ≤ T, S0 = s0 > 0, (72)

where µ is the mean rate of return and σ > 0 is the volatility.

If we interpret the stochastic integral in (72) as Riemann-Stieltjes, then by

the change of variable formula (23) the solution of (72) is

St = s0 exp
(
µt + σSkt

)
. (73)

As soon as we have the dynamics of the risky asset given by Riemann-

Stieltjes integral, always this leads to the existence of arbitrage oppor-

tunities.
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As example we recall the Shiryaev construction or an arbitrage for µ =

r, σ = 1 : π = (u, v) ,

ui = 1− exp(2Skt ), vt = 2
[
exp(Skt )− 1

]
.

From the change of variables formula (23) it follows that π is self-financing

and moreover π is arbitrage, since

V π
T =

[
exp(SkT )− 1

]2
exp(rT ) > 0.

An alternative which works in the case of pathwise cost is to restrict the

class of admissible portfolios, but to remain stil big enough to cover hedges

for relevant options and also to consider mixed cost models.

In this respect we consider the mixed model with the stock price given by

Sk,at = s0 exp

σSkt + aWt + µt− (1− 22k−1)σ2t2k+1 − 1

2
a2t

 , (74)

where σ, s0 > 0, a ∈ R, W is a Bm and the mixed process
(
σSkt + aWt

)
t

is assumed to be Gaussian (this heapens, for example, if Sk and W are

independent).

Remark. The mixed process
(
σSkt + aWt

)
t

is a semimartingale equiva-

lent with (aWt)t if k ∈
(

1
4,

1
2

)
and is not a semimartingale if 0 < k ≤ 1

4.

The following class of restringed class of self-financing portfolios is consid-

ered: a self-financing portfolio π = (u, v) is nds-admissible (no-doubling

strategy) if there exists a ≥ 0 such that V π
t ≥ a for all 0 ≤ t ≤ T P-a.s.

A nds-admissible portfolio π = (u, v) is regular if there exists a differen-

tiable function ϕ : [0, T ]×R4
+ → R such that

vt = ϕ
(
t, Sk,at , max

0≤s≤t
Sk,as , min

0≤s≤t
Sk,as ,

∫ t
0
Sk,as ds

)
.

As a consequence of a more general result due to Bender-Sottined-Valkeila

(Finance Stoch., 2008) the following result holds:
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Theorem 5.1. The mixed model is arbitrage free in the class of

regular portfolios.

Moreover, European, Assian, lookback options can be hedged with reg-

ular portfolios, with the same functionals and hedging prices as in tht

classical Black-Scholes model.

A different alternative to the pathwise approach of the stock price is to

consider the chaos form of the stochastic integral in (72).

We shall use the notation
∫ t
0 f (s)δchk,TB

H
s for the sub-fractional Skorohod

integral δchk,T
(
1(0,t)f

)
.

Therefore the price of the risky asset has the dynamics

dSt = µStdt + σStδ
ch
k,TS

k
t , 0 ≤ t ≤ T, S0 = s0 > 0. (75)

In the present situation the portofolio π is self-financing if v.S ∈ L1 ([0, T ]) ,

1(0,t)vS ∈
∣∣∣∣Sch∣∣∣∣sf

k,T
for a.a. t, and

V π
t = V π

0 +
∫ t
0

(rus exp (rs) + µvsSs) ds + σ
∫ t
0
vsSsδ

ch
k,TS

k
s , 0 ≤ t ≤ T.

(76)

A self-financing portofolio π is admissible if V π
t is bounded below for all

0 ≤ t ≤ T.

In order to find the explicit form of the St in (75) we consider the following

sub-fractional affine equation

Xt = η +
∫ t
0

[a0(s) + a(s)Xs] ds +
∫ t
0

[b0(s) + b(s)Xs] δ
ch
k,TB

H
s , t ∈ [0, T ] ,

(77)

η ∈ L2 (Ω,F , P ) and a0, b0, a, b : [0, T ] → R are measurable and bounded

functions.

Definition. A process (Xt)t∈[0,T ] is a strong solution of (77) if

(i) X. ∈ L1 ([0, T ]) and 1[0,t](.)b(.)X.is sub-fractional Skorohod integrable

for a.a. t ∈ [0, T ] .

(ii) For a.a. t ∈ [0, T ] , the equation (77) is satisfied P−a.s..
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Utilizing the chaos decomposition we have

Proposition 5.2. Assume that η = η0 ∈ R and define

Φ(t, s) = exp


∫ t
s
a(u)du +

∫ t
s
b(u)dBH

u −
1

2

∥∥∥∥b1[s,t]

∥∥∥∥2
Λ

sf
k,T

 .
Then (77) has a unique strong solution X

Xt = Φ(t, t0)η0 +
∫ t
t0

Φ(t, s)a0(s)ds +
∫ t
t0

Φ(t, s)b0(s)dB
H
s (78)

Corollary. The stock price St in (75) is given by

St = s0 exp
{
µt−

(
1− 22k−1

)
σ2t2k+1 + σSkt

}
. (79)

Remark. The standard Black-Scholes model is markovian and the log-

returns are stationary independent Gaussian random variables.

The fractional Black-Scholes model is nonmarkovian and the log-returns

are stationary non-independent Gaussian random variables.

The sub-fractional Black-Scholes model differs from fractional Black-Scholes

model by the non stationarity of the log-returns

Rt,t+s = µs−
(
1− 22k−1

)
σ2

[
(t + s)2k+1 − t2k+1

]
+ σ

(
Skt+s − Skt

)
.

Definition. A probability measure Q on FS
T which is equivalent with P

(Q ∼ P ) is called a quasi-martingale measure (or average risk neutral

measure) if:

(i) There exists a Gaussian process (Zt)0≤t≤T with respect to Q such that

StB
−1
t = exp(Zt), 0 ≤ t ≤ T. (80)

(ii) For every 0 ≤ t ≤ T,

EQ(StB
−1
t ) = s0. (81)

Remark. It is clear that if Q is a quasi-martingale measure then Q is

uniquely determined on FSk

T = FS
T .

Define the probability measure Q by

dQ

dP
|FSk

t
= exp

−
µ− r

σ
Mk

t −
µ− r

σ

2 d2
k

2(1− 2k)
t1−2k

 . (82)
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Remarks. (a) By Girsanov’s theorem, the processZk
t := Skt +

µ− r

σ
t


t

is a sfBm under Q.

(b) The relation stock price becomes in terms of Zk

St = exp
{
Zk
t − (1− 22k−1)t2k+1

}
, (83)

and it is clear that St has under Q the dynamics

dSt = Stδ
ch
k,TZ

k
t , 0 ≤ t ≤ T, S0 = s0. (84)

The main result is the following
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Theorem 5.3. (i) The sub-fractional Black-Scholes market is arbi-

trage free and for every bounded contigent claim F ∈
∣∣∣∣D1,2

k (Q)
∣∣∣∣ there

exist v0 ∈ R and an admissible portofolio π such that

V π
0 = v0, V

π
T = F P − a.s.

(ii) The following relation holds:

EQ

[
STB

−1
T | FSk

t

]
= StB

−1
t exp(K(T, t)), ∀0 ≤ t ≤ T, (85)

where

K(T, t) = exp
{
dk(r − µ)

∫ t
0
Ik
T−,2,k+1

2

(
1(0,t)Ψt,T

)
(s) s−kds

−σ2c2k
∫ t
0
n2(T, s)ds + σ

∫ t
0

Ψt,T (s)dSks + σ2(1− 22k−1)t2k+1. (86)

In particular Q is the unique quasi-martingale measure and Q is not

a martingale measure.

Remark. The price CT (F ) of the contigent claim F is given by

CT (F ) = EQ

(
B−1
T F

)
. (87)

The corresponding replicating portfolio π = (u, v) also can be described.

The price of the contigent clain f (ST ) is given by the formula

CT (f (ST )) =
exp(−rT )√

2π

×
∫
R
fs0 exp

{(
σT k+

1
2y + rT − σ2

(
1− 22k−1

))
T 2k+1

}
exp(−y

2

2
)dy

(88)

In particular the price of of an European call is

CT ((ST −K)+) = s0Φ(y1)−K exp(−rT )Φ(y2), (89)

y1 =
log s0

K + rT + σ2
(
1− 22k−1

)
T 2k+1

σ
√

2− 22kT k+
1
2

,
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y1 =
log s0

K + rT − σ2
(
1− 22k−1

)
T 2k+1

σ
√

2− 22kT k+
1
2

.

Comments. (a) In the mixed sub-fractional model the class of regular

portfolios is a abitrage-free class that is sufficiently large to cover hedges

for most known relevant options.

A recent result by Bender, Sottinen and Valkeila (Finance Stoch., 2008) ex-

tends no-arbitrage property and robust hedges to a class of non-semimartingale

models larger than the mixed processes and a larger class of portfolios.

It should be noted that the quadratic variation is the main property which

is necessary for pricing in non-semimartingale models.

(b) The use of chaos form of the Skorohod integral in the sub-fractional

Black-Scholes model does not have a nice economic interpretation (Bjork-

Hult, 2005 for fBm case) and also this is problematic from the mathematical

point of view (Nualart-Taqqu, 2008). It happens that different Gaussian

processes with the same variation as Sk give the same price for European

call options.

Therefore in above mentioned both cases it is not the distribution of the

process which determines uniquely the prices, but the variation of the

process.

(c) An alternative to rescue the sub-fractional Black-Scholes model is to

use so called market observers according to an idea by Øksendal (Bender,

2003)
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6 A decomposition of sub-fractional Brow-
nian motion

Recall that a continuous process (Xt)t∈[0,T ] admits α−variation (resp.

α−strong variation) if the following limit in probability exists for every

t ∈ [0, T ] ,

V n,α
t (X) =

n−1∑
i=0

∣∣∣∣∣X (i+1)t
n
−X it

n

∣∣∣∣∣
α
,

resp.

lim
ε→0

1

ε

∫ t
0
|Xs+ε −Xs|α ds.

Remark 6.1. For the fBm it is known that 2
2k+1−variation (resp. 2

2k+1-

strong variation) is ρ 2
2k+1

t, where ρp = E (|N(0, 1)|p)(see Rogers-Math.

Finance-1997 for the case of variation : the case of strong variation follows

along the same arguments as for variation).

For sfBm the same result is obtained by using linear regression (see

CT-Stochastics-2007).

We consider the function

K(s, t) =
1

2

[
s2k+1 + t2k+1 − (s + t)2k+1

]
, s, t ∈ [0, T ] , (90)

and if (Wt)t∈[0,T ] is a Brownian motion, we define the process
(
Xk
t

)
t∈[0,T ]

as

the Wiener integral

Xk
t =

∫ ∞
0

(
1− e−θt

)
θ−k−1dWθ. (91)

Remark 6.2 (Nualart-Lei: SPL 79, 2009). The centered Gaussian pro-

cess
(
Xk
t

)
t∈[0,T ]

has the covariance

CXk(s, t) = −Γ (1− 2k)

k(2k + 1)
K(s, t), (92)

and has the representation

Xk
t =

∫ ∞
0
Y k
t dt, (93)
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Y k
t =

∫ ∞
0
e−θtθ−kdWθ. (94)

In particularXk has a version with infinitely differentiable paths on (0,∞) and

absolutely continuous paths on R+.

Remark 6.3. Note that K is a covariance function if k ∈
(
−1

2, 0
)

and

−K is also a covariance function if k ∈
(
0, 1

2

)
.

Denote

|Λ|Xk =
{
f : [0, T ] → R :

∫ T
0

∫ T
0
|f (s)f (t)| (s + t)2k−1dsdt <∞

}
.

Lemma 6.4. We have the inclusion |Λ|Xk ⊂ ΛXk and the relation

(denoting by ‖f‖Λ
Xk

the norm of f as an element of the domain of the

Wiener integral ΛXk )

‖f‖2
Λ

Xk
= Γ (1− 2k)

∫ T
0

∫ T
0
f (s)f (t)(s + t)2k−1dsdt, f ∈ |Λ|Xk . (95)

Moreover, if f ∈ L1
(
[0, T ] , tk−

1
2dt

)
then f ∈ |Λ|Xk and the following

equality holds ∫ T
0
f (t)dXk

t =
∫ T
0
f (t)Y k

t dt. (96)
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Theorem 6.5 (J.R. de Chavez, CT-2009) (a) Let k ∈
(
−1

2, 0
)

and let(
Bk
t

)
t∈[0,T ]

be a fBm independent of the Bm (Wt)t∈[0,T ] .

Then the process

Skt =

√√√√√√− k(2k + 1)

Γ (1− 2k)
Xk
t +Bk

t , t ∈ [0, T ] , (97)

is a sfBm. In particular

ΛXk ∩ ΛBk = ΛSk. (98)

Moreover, if

f ∈ I−kT−
(
L2 ([0, T ])

)
∩ L1

(
[0, T ] , tk−

1
2dt

)
,

then f ∈ ΛSk and

∫ T
0
f (t)dSkt =

√√√√√√− k(2k + 1)

Γ (1− 2k)

∫ T
0
f (t)Y k

t dt +
∫ T
0
f (t)dBk

t , (99)

∥∥∥∥∥
∫ T
0
f (t)dSkt

∥∥∥∥∥
2

L2(Ω,F ,P )
= Γ (1− 2k)

∫ T
0

∫ T
0
f (s)f (t) (s + t)2k−1 dsdt

+
πk(2k + 1)

Γ (1− 2k) sin πk
‖ϕ‖2

L2([0,T ]) , (100)

where I−kT−(skϕ)(u) = ukf (u).

(b) Let k ∈
(
0, 1

2

)
and let

(
Skt

)
t∈[0,T ]

be a sfBm independent of the Bm

(Wt)t∈[0,T ] .

Then the process

Bk
t =

√√√√√√ k(2k + 1)

Γ (1− 2k)
Xk
t + Skt , t ∈ [0, T ] , (101)

is a fBm. In particular

ΛXk ∩ ΛSk = ΛBk. (102)

Moreover, if ∫ T
0

∫ T
0
|f (s)f (t)| |s− t|2k−1 dsdt <∞, (103)
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then f ∈ ΛBk and

∫ T
0
f (t)dSkt =

∫ T
0
f (t)dBk

t −
√√√√√√ k(2k + 1)

Γ (1− 2k)

∫ T
0
f (t)Y k

t dt, (104)

∥∥∥∥∥
∫ T
0
f (t)dSkt

∥∥∥∥∥
2

L2(Ω,F ,P )
= k(2k + 1)

∫ T
0

∫ T
0
f (s)f (t) |s− t|2k−1 dsdt

−Γ (1− 2k)
∫ T
0

∫ T
0
f (s)f (t) (s + t)2k−1 dsdt. (105)

Remark 6.6. In Monrad-Rootzén: PTRF-1995 the following Chung’s

law of iterated logariihm is obtained for fBm: For every t0 > 0 there exists

a positive constant ck(t0) such that

lim
t→0

max0≤r≤t
∣∣∣∣Bk

r+t0
−Bk

t0

∣∣∣∣
t

2k+1
2 (log |log t|)

2k+1
2

= ck(t0), a.s.

Proposition 6.7. (a) The 2
2k+1−variation (resp. 2

2k+1−strong varia-

tion) of sfBm is ρ 2
2k+1

t.

(b) (Chung’s law of iterated logarithm for sfBm). We have

lim
t→0

max0≤r≤t
∣∣∣∣Skr

∣∣∣∣
t

2k+1
2 (log |log t|)

2k+1
2

= ck(t0), a.s.
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