# Multigrid Methods in PDE-Constrained Optimization

### Andrei Draganescu University of Maryland, Baltimore County

Workshop Exploratoriu: Teme Actuale de Cercetare in Matematici Aplicate September 22-23, 2010

イロト イポト イヨト イヨト

## Acknowledgments

#### collaborators:

**Cosmin Petra** (Argonne National Lab), Todd Dupont (U Chicago), Volkan Akçelik (Exxon-Mobil), George Biros (Georgia Tech), Omar Ghattas (U Texas), Judith Hill (Oak Ridge National Lab), Jungho Lee (Oak Ridge National Lab), Bart van Bloemen Waanders (Sandia),

Jyoti Saraswat (UMBC), Na Rae Lee (UMBC),

 sponsors: NSF, DOE

・ 何 ト ・ ヨ ト ・ ヨ ト …

## Outline



Motivation and problem formulation

## 2 Optimization





A. Draganescu Multigrid methods in PDE-constrained optimization

イロト イポト イヨト イヨト

# **Problem formulation**

- Model problem:
  - $K: L^2(\Omega) \to L^2(\Omega)$  compact, linear,  $f \in L^2(\Omega)$

Optimal control problem

minimize 
$$\frac{1}{2} \| \mathcal{K}u - f \|^2 + \frac{\beta}{2} \| u \|^2$$
  
subj to:  $u \in L^2(\Omega), \ a \le u \le b$  (1)

- Motivating examples:
  - K time-T solution operator of a parabolic equation
  - K image-blurring (integral) operator
  - 3  $K = -\Delta^{-1}$  elliptic optimal control problem

イロン 不得 とくほ とくほう 一頭

# Motivating applications

- 1. Backward (inverse) advection-diffusion problems:
  - T > 0 fixed "end-time", *f* end-time state,  $u_0$  initial state
  - $u(\cdot, t)$  transported quantity subjected to:

$$\begin{cases} \partial_t u - \nabla \cdot (a \nabla u + bu) + cu = 0 & \text{on } \Omega \\ u(x, t) = 0 & \text{for } x \in \partial \Omega, \ t \in [0, T] \\ u(x, 0) = u_0(x) & \text{for } x \in \Omega \end{cases}$$

• K = S(T): initial - to - final

$$S u_0 = S(T)u_0 \stackrel{\text{def}}{=} u(\cdot, T)$$

イロト 不得 トイヨト イヨト 三頭

# Motivating applications

- 2. Image deblurring:
  - K Fredholm first kind integral operator (blurring)

$$(Ku)(x) = \int k(x-y)u(y)$$

- *f* blurred image,  $u: \Omega \rightarrow [0, 1]$  correct image
- 3. Elliptic optimal control problem:
  - PDE-constrained optimal control problem

minimize 
$$\frac{1}{2} \|y - f\|^2 + \frac{\beta}{2} \|u\|^2$$
  
subj to:  $-\Delta y = u$   
 $a \le u \le b$ 

イロト 不得 トイヨト イヨト 三連

# Motivating applications

- 2. Image deblurring:
  - K Fredholm first kind integral operator (blurring)

$$(Ku)(x) = \int k(x-y)u(y)$$

- *f* blurred image,  $u: \Omega \rightarrow [0, 1]$  correct image
- 3. Elliptic optimal control problem:
  - PDE-constrained optimal control problem

minimize 
$$\frac{1}{2} \|y - f\|^2 + \frac{\beta}{2} \|u\|^2$$
  
subj to:  $-\Delta y = u$   
 $a \le u \le b$ 

イロト 不得 トイヨト イヨト 三頭

# Why bound-constraints ?

- Physically meaningful, other qualitative considerations
- Example: solution is localized if the "true" solution is so



# Context

- Large-scale problems: 3D:  $1000 \times 1000 \times 100 = 10^8$  spatial unknowns
- *K* treated as black-box
- Multiple resolutions of K are available
- Unconstrained problem can be solved efficiently using multigrid
- Goal: find a highly efficient solution method for inequality-constrained problems

ヘロト ヘアト ヘビト ヘビト

# Context

• Large-scale problems: 3D:  $1000 \times 1000 \times 100 = 10^8$  spatial unknowns

- *K* treated as black-box
- Multiple resolutions of K are available
- Unconstrained problem can be solved efficiently using multigrid
- Goal: find a highly efficient solution method for inequality-constrained problems

イロト イポト イヨト イヨト

# Scenario: air contamination event in the LA Basin initial event



courtesy of Omar Ghattas

# Scenario: air contamination event in the LA Basin evolution: 60 minutes



# Scenario: air contamination event in the LA Basin evolution: 120 minutes



# Scenario: air contamination event in the LA Basin evolution: 180 minutes



# Scenario: air contamination event in the LA Basin evolution: 240 minutes



# Scenario: air contamination event in the LA Basin evolution: 300 minutes



## **Related work**

#### Unconstrained

Hackbusch, King (92), Rieder (97), Hanke and Vogel (99), Kaltenbacher (03), Draganescu and Dupont (08), Akcelik, Biros, Draganescu, Ghattas, Hill, and van Bloemen Waanders (05), Biros and Dogan (08)

#### Control-constrained

Maar and Schulz (00), Borzi and Kunisch (05), Vallejos and Borzi (08), Benzi, Haber, and Taralli (09)

#### Review

Borzi and Schulz (SIAM Review, June 09)

<ロ> <同> <同> < 回> < 回> < 回> < 回>

## Discretization

#### Discretize-then-Optimize strategy

- Spaces: conforming FE, linear splines (V<sub>h</sub>)
- Operators:  $K_h : V_h \rightarrow V_h$  satisfy

smoothing:

 $\|Ku\|_{H^m(\Omega)} \le C \|u\|, \ \forall u \in L^2(\Omega), \ m = 0, 1, 2$ 

2 smoothed approximation: for all h

 $\|Ku - K_h u\|_{H^m(\Omega)} \le Ch^{2-m} \|u\| \quad \forall u \in V_h, \ m = 0, 1$ 

イロト 不得 トイヨト イヨト 三星

# **Discretization**

### Discretize-then-Optimize strategy

- Spaces: conforming FE, linear splines (V<sub>h</sub>)
- Operators:  $K_h : V_h \rightarrow V_h$  satisfy
  - smoothing:

$$\|Ku\|_{H^m(\Omega)} \le C \|u\|, \ \forall u \in L^2(\Omega), \ m = 0, 1, 2$$

$$\|\mathit{K} u - \mathit{K}_h u\|_{\mathit{H}^m(\Omega)} \leq \mathit{C} h^{2-m} \|u\| \quad \forall u \in \mathit{V}_h, \ m = 0, 1$$

イロト イポト イヨト イヨト 一座

# **Discrete problem formulation**

## • Norms: discrete norm $||u||_h^2 = \sum w_i u^2(P_i)$

 Inequality constraints: a ≤ u ≤ b, enforced at nodes (strong enforcement)

#### Discrete optimal control problem

minimize  $\frac{1}{2} \|K_h u - f_h\|_h^2 + \frac{\beta}{2} \|u\|_h^2$ subj to:  $u \in V_h$ ,  $a_h(P) \le u(P) \le b_h(P)$ ,  $\forall$  node P (2)

<ロト < 同ト < 回ト < 回ト = 三

# Discrete problem formulation

- Norms: discrete norm  $||u||_h^2 = \sum w_i u^2(P_i)$
- Inequality constraints: a ≤ u ≤ b, enforced at nodes (strong enforcement)

#### Discrete optimal control problem

minimize  $\frac{1}{2} \|K_h u - f_h\|_h^2 + \frac{\beta}{2} \|u\|_h^2$ subj to:  $u \in V_h$ ,  $a_h(P) \le u(P) \le b_h(P)$ ,  $\forall$  node P (2)

<ロト < 同ト < 回ト < 回ト = 三

# Discrete problem formulation

- Norms: discrete norm  $||u||_h^2 = \sum w_i u^2(P_i)$
- Inequality constraints: a ≤ u ≤ b, enforced at nodes (strong enforcement)

#### Discrete optimal control problem

minimize  $\frac{1}{2} \| K_h u - f_h \|_h^2 + \frac{\beta}{2} \| u \|_h^2$ subj to:  $u \in V_h$ ,  $a_h(P) \le u(P) \le b_h(P)$ ,  $\forall$  node P (2)

イロト 不得 トイヨト イヨト 三連

# **Optimization methods**

#### Optimization algorithms (outer iteration):

- semi-smooth Newton methods (active-set type strategies)
- here: interior point methods (IPM)

Require: solving few linear systems at each outer iteration

- semi-smooth Newton: subsystem (principal minor)
- IPM: modified, same-size system

#### • Goals:

- small # of outer iterations (prefer mesh-independence)
- here: fast solvers for the linear systems:
   # of linear iterations to decrease with increasing resolution

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

# **Optimization methods**

### • Optimization algorithms (outer iteration):

- semi-smooth Newton methods (active-set type strategies)
- here: interior point methods (IPM)

#### • Require: solving few linear systems at each outer iteration

- semi-smooth Newton: subsystem (principal minor)
- IPM: modified, same-size system

#### • Goals:

- small # of outer iterations (prefer mesh-independence)
- here: fast solvers for the linear systems:
   # of linear iterations to decrease with increasing resolution

<ロト < 同ト < 回ト < 回ト = 三

# **Optimization methods**

### • Optimization algorithms (outer iteration):

- semi-smooth Newton methods (active-set type strategies)
- here: interior point methods (IPM)
- Require: solving few linear systems at each outer iteration
  - semi-smooth Newton: subsystem (principal minor)
  - IPM: modified, same-size system
- Goals:
  - small # of outer iterations (prefer mesh-independence)
  - here: fast solvers for the linear systems:
     # of linear iterations to decrease with increasing resolution

ヘロト ヘ戸ト ヘヨト ヘヨト

# Primal-dual interior point methods

For fixed resolution  $V_h$ :

• solve perturbed KKT system for  $\mu \downarrow 0$ :

$$(\beta W + K^T WK)u - v = -K^T Wf$$
$$u \cdot v = \mu e$$
$$u, v > 0$$

Mehrotra's predictor-corrector IPM

$$(\beta W + K^T W K) \Delta u - \Delta v = r_c$$
$$V \Delta u + U \Delta v = r_a$$

reduced system

$$(\beta W + U^{-1}V + K^T WK)\Delta u = r_c - U^{-1}r_a$$

with U, V diagonal, positive

<ロン <回と < 注入 < 注入 < 注入 < 注入 < 注入

# Primal-dual interior point methods

For fixed resolution  $V_h$ :

• solve perturbed KKT system for  $\mu \downarrow 0$ :

$$(\beta W + K^T WK)u - v = -K^T Wf$$
$$u \cdot v = \mu e$$
$$u, v > 0$$

Mehrotra's predictor-corrector IPM

$$(\beta W + K^T WK) \Delta u - \Delta v = r_c$$
$$V \Delta u + U \Delta v = r_a$$

reduced system

$$(\beta W + U^{-1}V + K^T WK)\Delta u = r_c - U^{-1}r_a$$

with U, V diagonal, positive

イロト 不得 トイヨト イヨト 三連

# Primal-dual interior point methods

For fixed resolution  $V_h$ :

• solve perturbed KKT system for  $\mu \downarrow 0$ :

$$(\beta W + K^T WK)u - v = -K^T Wf$$
$$u \cdot v = \mu e$$
$$u, v > 0$$

Mehrotra's predictor-corrector IPM

$$(\beta W + K^T WK) \Delta u - \Delta v = r_c$$
$$V \Delta u + U \Delta v = r_a$$

reduced system

$$(\beta W + U^{-1}V + K^T WK)\Delta u = r_c - U^{-1}r_a$$

with U, V diagonal, positive

イロン 不得 とくほ とくほ とう

## The systems

- the matrix:  $(\beta W + U^{-1}V + K^T WK)$
- $U^{-1}V$  represents a relatively smooth function



with 
$$D_{\beta+\lambda} = \beta I + W + U$$

... and further

$$D_{\sqrt{\beta+\lambda}}(I + \underbrace{W^{-1}AK^TWKA}_{(KA)^*(KA)})D_{\sqrt{\beta+\lambda}}$$

with  $A = D_{\sqrt{1/(\beta+\lambda)}}$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

## The systems

- the matrix:  $(\beta W + U^{-1}V + K^T WK)$
- $U^{-1}V$  represents a relatively smooth function
- need to invert

$$(D_{\beta+\lambda} + \underbrace{W^{-1}K^TWK}_{K^*K})$$

with 
$$D_{\beta+\lambda} = \beta I + W^{-1} U^{-1} V$$

... and further

$$D_{\sqrt{\beta+\lambda}}(I + \underbrace{W^{-1}AK^TWKA}_{(KA)^*(KA)})D_{\sqrt{\beta+\lambda}}$$

with  $A = D_{\sqrt{1/(\beta+\lambda)}}$ 

イロン 不得 とくほ とくほう 一頭

## The systems

- the matrix:  $(\beta W + U^{-1}V + K^T WK)$
- $U^{-1}V$  represents a relatively smooth function
- need to invert

$$(D_{\beta+\lambda} + \underbrace{W^{-1}K^TWK}_{K^*K})$$

with 
$$D_{\beta+\lambda} = \beta I + W^{-1} U^{-1} V$$

... and further

$$D_{\sqrt{\beta+\lambda}}(I + \underbrace{W^{-1}AK^TWKA}_{(KA)^*(KA)})D_{\sqrt{\beta+\lambda}}$$

with  $A = D_{\sqrt{1/(\beta+\lambda)}}$ 

イロン 不得 とくほ とくほう 一頭

## The systems

Need good preconditioner for

$$G_h = I + (K_h A_h)^* (K_h A_h) = I + (L_h)^* (L_h)$$

with 
$$A_h = D_{\sqrt{1/(\beta + \lambda_h)}}$$

• Assume  $\lambda_h = \text{interpolate}(\lambda)$ 

$$L_{h} \stackrel{\text{def}}{=} K_{h}A_{h}$$
$$L \stackrel{\text{def}}{=} KD_{\sqrt{1/(\beta+\lambda)}}$$

イロト 不同 トイヨト イヨト

## Key facts

- $G_h = I + L_h^* L_h$  is **dense**, available only matrix-free
- $\operatorname{cond}(I + L_h^*L_h) = O(\beta^{-1})$ , mesh-independent, large

• 
$$A_h = D_{\sqrt{1/(\beta + \lambda_h)}}$$
 neutral with respect to smoothing

•  $L_{(h)} = K_{(h)}A_{(h)}$  same smoothing properties as  $K_{(h)}$ 

イロン 不得 とくほ とくほ とうほ

## Two-grid preconditioner



#### Preconditioner

$$G_h \approx M_h \stackrel{\text{def}}{=} \rho \oplus G_{2h}\pi$$
$$M_h^{-1} = \rho + G_{2h}^{-1}\pi$$

イロト イポト イヨト イヨト

3

## Two-grid preconditioner



#### Preconditioner

$$G_h \approx M_h \stackrel{\text{def}}{=} \rho \oplus G_{2h}\pi$$
$$M_h^{-1} = \rho + G_{2h}^{-1}\pi$$

A. Draganescu Multigrid methods in PDE-constrained optimization

ヘロト ヘアト ヘビト ヘビト

Two-grid preconditioner

#### Theorem (A.D. and C.P., 2009)

On a uniform grid

$$ho(I-M_h^{-1}G_h)\leq Ch^2\|(eta+\lambda)^{-rac{1}{2}}\|_{W^2_\infty}$$

Remarks:

- optimal order in h
- quality expected to decay as  $\mu \downarrow 0$  since  $\lambda$  only  $L^2$  in general
- for fixed β # linear iterations/outer iteration expected to decrease with h ↓ 0
- *M<sub>h</sub>* is slightly non-symmetric

イロト 不得 トイヨト イヨト 三頭

## Multigrid preconditioner

### • Multigrid preconditioner definition:

$$L_h \stackrel{\text{def}}{=} \mathcal{N}_{\mathbf{G}_h}(L_{2h}\pi + \rho)$$

where

$$\mathcal{N}_{G_h}(X) \stackrel{\mathrm{def}}{=} 2X - X \cdot G_h \cdot X$$

・ロット (雪) (山) (山) (山)

In vitro system I: backwards advection-diffusion

$$K = S(T), \ \lambda(x) = \sin(\pi x)$$

$$d_{\sigma}(G,M) = \max\{|\ln \lambda| : \lambda \in \sigma(G,M) \}$$

Table: approx. 
$$d_{\sigma} \approx \rho (I - M_h^{-1} G_h)$$

| $h \setminus eta$ | 1            |        | 0.1          |        | 0.01         |        |
|-------------------|--------------|--------|--------------|--------|--------------|--------|
|                   | $d_{\sigma}$ | rate   | $d_{\sigma}$ | rate   | $d_{\sigma}$ | rate   |
| 1/80              | 0.0206       |        | 0.1127       |        | 0.2812       |        |
| 1/160             | 0.0066       | 3.1342 | 0.0363       | 3.1078 | 0.1270       | 2.2140 |
| 1/320             | 0.0020       | 3.3140 | 0.0102       | 3.5488 | 0.0445       | 2.8535 |
| 1/640             | 0.0006       | 3.5199 | 0.0027       | 3.7365 | 0.0123       | 3.6284 |

イロン 不得 とくほ とくほう 一頭

In vitro system II: elliptic-constrained problem

$$K = -\Delta^{-1}, \ \lambda(x) = \sin(\pi x)$$

$$d_{\sigma}({m G},{m M}) = \max\{|\ln\lambda| \; : \; \lambda \in \sigma({m G},{m M}) \; \}$$

Table: approx. 
$$d_{\sigma} \approx \rho (I - M_h^{-1} G_h)$$

| $h \setminus eta$ | 1            |        | 0.1          |        | 0.01         |        |
|-------------------|--------------|--------|--------------|--------|--------------|--------|
|                   | $d_{\sigma}$ | rate   | $d_{\sigma}$ | rate   | $d_{\sigma}$ | rate   |
| 1/80              | 8.66e-003    |        | 5.03e-002    |        | 2.21e-001    |        |
| 1/160             | 2.15e-003    | 4.0318 | 9.20e-003    | 5.4691 | 8.23e-002    | 2.6782 |
| 1/320             | 5.36e-004    | 4.0106 | 1.18e-003    | 7.7656 | 2.61e-002    | 3.1517 |
| 1/640             | 1.34e-004    | 4.0039 | 1.91e-004    | 6.2046 | 6.51e-003    | 4.0161 |
| 1/1280            | 3.35e-005    | 4.0016 | 4.86e-005    | 3.9275 | 1.07e-003    | 6.0762 |

・ロット (雪) (山) (山) (山)

Backwards advection-diffusion problem example

#### Optimal control problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2}\|S(T)u - f\|^2 + \frac{\beta}{2}\|u\|^2\\ \text{subj to:} & u \in L^2(\Omega), \ 0 \leq u \leq 1 \end{array}$$

•  $u(\cdot, t)$  transported quantity subjected to:

$$\begin{cases} \partial_t u - \nabla \cdot (a \nabla u + bu) + cu = 0 & \text{on } \Omega \\ u(x, t) = 0 & \text{for } x \in \partial \Omega, \ t \in [0, T] \\ u(x, 0) = u_0(x) & \text{for } x \in \Omega \end{cases}$$

• K = S(T): initial - to - final

$$S u_0 = S(T)u_0 \stackrel{\text{def}}{=} u(\cdot, T)$$

イロト 不得 トイヨト イヨト 三頭

(3)

## Solution



A. Draganescu Multigrid methods in PDE-constrained optimization

< • • • **•** 

ъ

-2

## Iteration count / predictor-step linear systems



A. Draganescu Multigrid methods in PDE-constrained optimization

3

## Evolution of quantities of interest

• Evolution of  $\|\lambda^{-\frac{1}{2}}\|_{W^2_{\infty}}$ ,  $\mu$ , and last  $\lambda_h$ :



Another measure of success

Total number of finest-level mat-vecs (application of K)

| $h \setminus$ levels | 1   | 2   | 3   |
|----------------------|-----|-----|-----|
| 1/1024               | 728 | 581 | 661 |
| 1/2048               | 740 | 463 | 489 |
| 1/4096               | 764 | 403 | 425 |
| 1/8192               | 768 | 377 | 403 |

イロン 不得 とくほ とくほ とうほ

## Elliptic-constrained problem

minimize  $\frac{1}{2} \|y - f\|^2 + \frac{\beta}{2} \|u\|^2$ subj to:  $-\Delta y = u, \quad -1 \le u \le 1$  $\Delta f = \frac{3}{2} \sin(2\pi x) \, \sin(2\pi y), \ \beta = 10^{-6}$ 



## Elliptic-constrained problem

minimize  $\frac{1}{2} \|y - f\|^2 + \frac{\beta}{2} \|u\|^2$ subj to:  $-\Delta y = u, \quad -1 \le u \le 1$  $\Delta f = \frac{3}{2} \sin(2\pi x) \, \sin(2\pi y), \ \beta = 10^{-6}$ 



## Iteration count / predictor-step linear systems



### Mat-vecs count

#### Total number of finest-level mat-vecs (Poisson solves)

| $h \setminus$ levels | 1   | 2   | 3   | 4   |
|----------------------|-----|-----|-----|-----|
| 1/256                | 354 | 282 | 572 | _   |
| 1/512                | 355 | 220 | 250 | 452 |
| 1/1024               | 355 | 198 | 210 | 224 |
| 1/2048               | 363 | 172 | 174 | 174 |

イロン 不得 とくほ とくほ とうほ

Current and future directions

- Inverse systems of semilinear advection-reaction-diffusion equations (Saraswat, N. R. Lee)
- Inverse hyperbolic problems (Hill, J. Lee)
- State constrained problems
- Long-term goal: efficient solution of large-scale data assimilation problems (4D Var method for weather and climate modeling)

イロト 不得 トイヨト イヨト 三連

## Multigrid preconditioner

### • Multigrid preconditioner definition:

$$L_h \stackrel{\text{def}}{=} \mathcal{N}_{\mathbf{G}_h}(L_{2h}\pi + \rho)$$

where

$$\mathcal{N}_{G_h}(X) \stackrel{\mathrm{def}}{=} 2X - X \cdot G_h \cdot X$$

・ロット (雪) (山) (山) (山)