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Motivation and problem formulation

Problem formulation

@ Model problem:
K : L?(Q) — L?(Q) compact, linear, f € L?(Q)

Optimal control problem

minimize  1|Ku — |2 + Z]ul?
subjto: uel?Q), a<u<b

(1)

@ Motivating examples:
© K time-T solution operator of a parabolic equation
© K image-blurring (integral) operator
© K = —A—1-elliptic optimal control problem
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Motivation and problem formulation

Motivating applications

1. Backward (inverse) advection-diffusion problems:
@ T > 0 fixed “end-time”, f end-time state, ug initial state

@ u(-,t) transported quantity subjected to:

ou—-V-(aVu+bu)+cu=0 onQ
u(x,t)=0 forx € 90Q,t €[0,T]
u(x,0) = ug(x) forx € Q

@ K = S(T): initial - to - final

Sug = S(T)Uo d;f U(-,T)
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Motivation and problem formulation

Motivating applications

2. Image deblurring:

@ K Fredholm first kind integral operator (blurring)

(Ku)(x /kx—

@ f blurred image, u: Q — [0,1] correct image
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Motivation and problem formulation

Motivating applications

2. Image deblurring:

@ K Fredholm first kind integral operator (blurring)

(Ku)(x /kx—

@ f blurred image, u: Q — [0,1] correct image

3. Elliptic optimal control problem:
@ PDE-constrained optimal control problem

minimize 3y — f|? + 5|u[?
subj to: —Ay =u

a<u<b
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Motivation and problem formulation

Why bound-constraints ?

@ Physically meaningful, other qualitative considerations
@ Example: solution is localized if the “true” solution is so

concentration
T
L
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Motivation and problem formulation

Context

@ Large-scale problems:
3D: 1000 x 1000 x 100 = 108 spatial unknowns

@ K treated as black-box
@ Multiple resolutions of K are available

@ Unconstrained problem can be solved efficiently using
multigrid
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Motivation and problem formulation

Context

@ Large-scale problems:
3D: 1000 x 1000 x 100 = 108 spatial unknowns

@ K treated as black-box
@ Multiple resolutions of K are available

@ Unconstrained problem can be solved efficiently using
multigrid

@ Goal: find a highly efficient solution method for
inequality-constrained problems
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Motivation and problem formulation

Scenario: air contamination event in the LA Basin

initial event

Target Concentration Profile

Concentration

.m.n

15.0

B

courtesy of Omar Ghattas




Motivation and problem formulation

Scenario: air contamination event in the LA Basin

evolution: 60 minutes

Target Concentration
Time = 60 min

courtesy of Omar Ghattas
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Motivation and problem formulation

Scenario: air contamination event in the LA Basin

evolution: 120 minutes

Target Concentration
Time = 120 min

courtesy of Omar Ghattas
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Motivation and problem formulation

Scenario: air contamination event in the LA Basin

evolution: 180 minutes

Target Concentration
Time = 180 min

courtesy of Omar Ghattas
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Motivation and problem formulation

Scenario: air contamination event in the LA Basin

evolution: 240 minutes

Target Concentration
Time = 240 min

courtesy of Omar Ghattas
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Motivation and problem formulation

Scenario: air contamination event in the LA Basin

evolution: 300 minutes

Target Concentration
Time = 300 min

courtesy of Omar Ghattas

s in PDE-constrained optimization



Motivation and problem formulation

Related work

@ Unconstrained
Hackbusch, King (92), Rieder (97), Hanke and Vogel (99),
Kaltenbacher (03), Draganescu and Dupont (08),

Akcelik, Biros, Draganescu, Ghattas, Hill, and van Bloemen
Waanders (05), Biros and Dogan (08)

@ Control-constrained
Maar and Schulz (00), Borzi and Kunisch (05), Vallejos and Borzi (08),
Benzi, Haber, and Taralli (09)

@ Review
Borzi and Schulz (SIAM Review, June 09)
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Optimization

Discretization

Discretize-then-Optimize strategy

@ Spaces: conforming FE, linear splines (V)
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Optimization

Discretization

Discretize-then-Optimize strategy

@ Spaces: conforming FE, linear splines (V)

@ Operators: Ky, : Vi, — Vy, satisfy
© smoothing:

|Ku|pmoy < Clu|, YueL?(Q), m=0,1,2
@ smoothed approximation: for all h

|Ku — Kpulum@) < Ch* ™ u| Vu € Vy, m=0,1
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Optimization

Discrete problem formulation

@ Norms: discrete norm |u[2 = Y w; u?(P;)
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Optimization

Discrete problem formulation

@ Norms: discrete norm |u[2 = Y w; u?(P;)

@ Inequality constraints: a < u < b, enforced at nodes
(strong enforcement)
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Optimization

Discrete problem formulation

@ Norms: discrete norm |u[2 = Y w; u?(P;)

@ Inequality constraints: a < u < b, enforced at nodes
(strong enforcement)

Discrete optimal control problem

minimize 3IKnu — |2 + Z|ul?
subjto:  u €V, an(P)<u(P)<by(P), VnodeP

(2)
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Optimization

Optimization methods

@ Optimization algorithms (outer iteration):

@ semi-smooth Newton methods (active-set type strategies)
@ here: interior point methods (IPM)
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Optimization

Optimization methods

@ Optimization algorithms (outer iteration):

@ semi-smooth Newton methods (active-set type strategies)
@ here: interior point methods (IPM)

@ Require: solving few linear systems at each outer iteration

@ semi-smooth Newton: subsystem (principal minor)
@ IPM: modified, same-size system
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Optimization

Optimization methods

@ Optimization algorithms (outer iteration):

@ semi-smooth Newton methods (active-set type strategies)
@ here: interior point methods (IPM)

@ Require: solving few linear systems at each outer iteration

@ semi-smooth Newton: subsystem (principal minor)
@ IPM: modified, same-size system

@ Goals:

@ small # of outer iterations (prefer mesh-independence)
@ here: fast solvers for the linear systems:
# of linear iterations to decrease with increasing
resolution
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Optimization

Primal-dual interior point methods

For fixed resolution Vy:

@ solve perturbed KKT system for p | O:

(BW + KTWK)u —v = —KTWf
u-v. = pe
uv > 0
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Optimization

Primal-dual interior point methods

For fixed resolution Vy:

@ solve perturbed KKT system for p | O:

(BW + KTWK)u —v = —KTWf
u-v. = pe
uv > 0

@ Mehrotra’s predictor-corrector IPM

(BW + KTWK)AU — Av = ¢
VAuU+UAvV = 1,5
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Optimization

Primal-dual interior point methods

For fixed resolution Vy:
@ solve perturbed KKT system for p | O:

(BW + KTWK)u —v = —KTWf
u-v. = pe
uv > 0

@ Mehrotra’s predictor-corrector IPM

(BW + KTWK)AU — Av = ¢
VAuU+UAvV = 1,5

@ reduced system
(BW + U~V + KTWK)Au =1, — U™,

with U,V diagonal, positive
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Multigrid for linear systems

The systems

@ the matrix: (BW + U~V + KTWK)

@ U~V represents a relatively smooth function
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Multigrid for linear systems

The systems

@ the matrix: (BW + U~V + KTWK)
@ U~V represents a relatively smooth function

@ need to invert
(Dgyx + W TKTWK)
K*K

with Dgir = Ol +w-tu-tv
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Multigrid for linear systems

The systems

@ the matrix: (BW + U~V + KTWK)
@ U~V represents a relatively smooth function

@ need to invert
(Dgyx + W TKTWK)
K*K
with Dgir = Ol +w-tu-tv

@ ... and further

D arx(l + W *AKTWKA)D /zrx
(KA)*(KA)

with A=D YIGESY
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Multigrid for linear systems

The systems

@ Need good preconditioner for
Gh = | + (KnAn)*(KnAn) = I + (Ln)*(Ln)
with A, = D\/m
@ Assume )\, = interpolate()\)

L, % kA,
L def

KD\/ 1/(B+X)

A. Draganescu
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Multigrid for linear systems

Key facts

@ Gy =1 + Ly*Ly is dense, available only matrix-free
@ cond(l + Lp*Ly) = O(B~1), mesh-independent, large

QA= Dm neutral with respect to smoothing

@ L) = KmnyAny same smoothing properties as Ky
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Multigrid for linear systems

Two-grid preconditioner

@ Scale separation:

“smooth " functions  “rough" functions
= =N
Vh = Van ) w

@ 7 = my = L%2—projection onto V.,

Gh = (71' +p)(| + Lh*Lh)(Tr—i—p) ~ p+7l'(| + Lh*Lh)7T
—— —

RGonm
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Multigrid for linear systems

Two-grid preconditioner

@ Scale separation:

“smooth " functions  “rough" functions
= =N
Vh = Van ) w

@ 7 = my = L%2—projection onto V.,

Gh = (71' +p)(| + Lh*Lh)(Tr—i—p) ~ p+7l'(| + Lh*Lh)7T
—— —

RGonm

Preconditioner

My £ p® Gonr

Myt = p+Gop i

o
2
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Multigrid for linear systems

Two-grid preconditioner

Theorem (A.D. and C.P., 2009)
On a uniform grid

p(1 = My ™Gn) < Ch2|(8 + A) 2wz

Remarks:
@ optimal order in h
@ quality expected to decay as x | 0 since A only L? in general

@ for fixed 3 # linear iterations/outer iteration expected to decrease
withh | 0

@ My is slightly non-symmetric
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Multigrid for linear systems

Multigrid preconditioner

@ Multigrid preconditioner definition:

def
Ln = NG, (Lonm + p)

where

N, (X) E2X =X -Gy - X
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Numerical results

In vitro system |: backwards advection-diffusion

K =S(T), A(X)=sin(nx)
d-(G,M) =max{|In\| : A € o(G,M) }

Table: approx. d, = p(I — M, *Gn)

h\p

1 0.1 0.01

d, rate d, rate d, rate

1/80

1/160
1/320
1/640

0.0206 0.1127 0.2812
0.0066 | 3.1342 | 0.0363 | 3.1078 | 0.1270 | 2.2140
0.0020 | 3.3140 | 0.0102 | 3.5488 | 0.0445 | 2.8535
0.0006 | 3.5199 | 0.0027 | 3.7365 | 0.0123 | 3.6284
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Numerical results

In vitro system II: elliptic-constrained problem

K =-A"1 A(x) = sin(nx)
d,(G,M) =max{|In\| : A€ o(G,M) }

Table: approx. d, =~ p(I — M, *Gn)

h\ g 1 0.1 0.01

d, rate d, rate d, rate
1/80 8.66e-003 5.03e-002 2.21e-001
1/160 2.15e-003 | 4.0318 | 9.20e-003 | 5.4691 | 8.23e-002 | 2.6782
1/320 5.36e-004 | 4.0106 | 1.18e-003 | 7.7656 | 2.61e-002 | 3.1517
1/640 1.34e-004 | 4.0039 | 1.91e-004 | 6.2046 | 6.51e-003 | 4.0161
1/1280 | 3.35e-005 | 4.0016 | 4.86e-005 | 3.9275 | 1.07e-003 | 6.0762
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Numerical results

Backwards advection-diffusion problem example

Optimal control problem

minimize  |S(T)u —f|? + 5 |ul?
subjto: uecl?Q), 0<u<1

@ u(-,t) transported quantity subjected to:

ou—V-(aVu+bu)+cu=0 onQ
u(x,t)=0 forx € 99, t € [0,T]
u(x,0) = ug(x) forx € Q

@ K = S(T): initial - to - final

S Ug = S(T)Uo d;f U(-,T)
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Numerical results

Solution

0.9
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Numerical results

Iteration count / predictor-step linear systems

20 : ‘ |
&—1024| unpreconditioned CG
-©-2048 |
10[L. - 4096
20 | | ) ‘
S 0 5 m - L |
<
g
T
3
S
k-]
o}
3
€
5
= 10[{—5-1024 ‘ i : ‘
i — T e ]
— - 204g| CCS With three-grid preconditioner
- 4096
° .|
p
0 ‘ ‘

0 5 10 15 20 25

tigrid methods in PDE rained optimization



Numerical results

Evolution of quantities of interest

@ Evolution of ||)F%||W§O, w, and last \p:

_x10°
6 T

—=—1024 )
H - ©-2048 evolution of [1/AY2]y2
-0-4096 &

IS
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Numerical results

Another measure of success

Total number of finest-level mat-vecs (application of K)

h\ levels | 1 2 3

1/1024 728 | 581 | 661
1/2048 740 | 463 | 489
1/4096 764 | 403 | 425
1/8192 768 | 377 | 403
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Numerical results

Elliptic-constrained problem

minimize Ly — 2 + ZJul?
subj to: —Ay=u, -1<u<l1
Af = 3 sin(27x) sin(2ry), 8= 10°

I
W“O“‘ | “‘2\ it

‘
i
i

f 3}::{‘\\\\
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Numerical results

Elliptic-constrained problem

minimize Ly — 2 + ZJul?
subj to: —Ay=u, -1<u<l1
Af = 3 sin(27x) sin(2ry), 8= 10°

I
W“O“‘ | “‘2\ it

‘
i
i

f 3}::{‘\\\\
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Numerical results

Iteration count / predictor-step linear systems
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Numerical results

Mat-vecs count

Total number of finest-level mat-vecs (Poisson solves)

h\ levels | 1 2 3 4
1/256 354 | 282 | 572 | —
1/512 355 | 220 | 250 | 452
1/1024 355 | 198 | 210 | 224
1/2048 363 | 172 | 174 | 174
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Numerical results

Current and future directions

@ Inverse systems of semilinear advection-reaction-diffusion
equations (Saraswat, N. R. Lee)

@ Inverse hyperbolic problems (Hill, J. Lee)

@ State constrained problems

@ Long-term goal: efficient solution of large-scale data
assimilation problems (4D Var method for weather and
climate modeling)
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Numerical results

Multigrid preconditioner

@ Multigrid preconditioner definition:

def
Ln = NG, (Lonm + p)

where

N, (X) E2X =X -Gy - X
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