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Problem formulation

Model problem:
K : L2(Ω) → L2(Ω) compact, linear, f ∈ L2(Ω)

Optimal control problem

minimize 1
2 ||Ku − f ||2 + β

2 ||u||2
subj to: u ∈ L2(Ω), a ≤ u ≤ b

(1)

Motivating examples:
1 K time-T solution operator of a parabolic equation
2 K image-blurring (integral) operator
3 K = −∆−1 - elliptic optimal control problem
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Motivating applications

1. Backward (inverse) advection-diffusion problems:

T > 0 fixed “end-time”, f end-time state, u0 initial state

u(·, t) transported quantity subjected to:






∂tu −∇ · (a∇u + bu) + cu = 0 on Ω
u(x , t) = 0 for x ∈ ∂Ω, t ∈ [0, T ]
u(x , 0) = u0(x) for x ∈ Ω

K = S(T ): initial - to - final

S u0 = S(T )u0
def
= u(·, T )
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Motivating applications

2. Image deblurring:

K Fredholm first kind integral operator (blurring)

(Ku)(x) =

∫

k(x − y)u(y)

f blurred image, u : Ω → [0, 1] correct image

3. Elliptic optimal control problem:

PDE-constrained optimal control problem

minimize 1
2 ||y − f ||2 + β

2 ||u||2
subj to: −∆y = u

a ≤ u ≤ b
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Why bound-constraints ?

Physically meaningful, other qualitative considerations
Example: solution is localized if the “true” solution is so
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Context

Large-scale problems:
3D: 1000 × 1000 × 100 = 108 spatial unknowns

K treated as black-box

Multiple resolutions of K are available

Unconstrained problem can be solved efficiently using
multigrid

Goal: find a highly efficient solution method for
inequality-constrained problems
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Scenario: air contamination event in the LA Basin
initial event

courtesy of Omar Ghattas
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Scenario: air contamination event in the LA Basin
evolution: 60 minutes
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Scenario: air contamination event in the LA Basin
evolution: 120 minutes
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Scenario: air contamination event in the LA Basin
evolution: 180 minutes
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Scenario: air contamination event in the LA Basin
evolution: 240 minutes
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Scenario: air contamination event in the LA Basin
evolution: 300 minutes
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Related work

Unconstrained
Hackbusch, King (92), Rieder (97), Hanke and Vogel (99),
Kaltenbacher (03), Draganescu and Dupont (08),

Akcelik, Biros, Draganescu, Ghattas, Hill, and van Bloemen

Waanders (05), Biros and Dogan (08)

Control-constrained
Maar and Schulz (00), Borzi and Kunisch (05), Vallejos and Borzi (08),

Benzi, Haber, and Taralli (09)

Review
Borzi and Schulz (SIAM Review, June 09)
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Discretization

Discretize-then-Optimize strategy

Spaces: conforming FE, linear splines (Vh)

Operators: Kh : Vh → Vh satisfy

1 smoothing:

||Ku||Hm(Ω) ≤ C ||u|| , ∀u ∈ L2(Ω), m = 0, 1, 2

2 smoothed approximation: for all h

||Ku − Khu||Hm(Ω) ≤ Ch2−m ||u|| ∀u ∈ Vh, m = 0, 1
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Discrete problem formulation

Norms: discrete norm ||u||2h =
∑

wi u2(Pi)

Inequality constraints: a ≤ u ≤ b, enforced at nodes
(strong enforcement)

Discrete optimal control problem

minimize 1
2 ||Khu − fh||2h + β

2 ||u||2h
subj to: u ∈ Vh, ah(P) ≤ u(P) ≤ bh(P), ∀ node P

(2)
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Optimization methods

Optimization algorithms (outer iteration):
semi-smooth Newton methods (active-set type strategies)
here: interior point methods (IPM)

Require: solving few linear systems at each outer iteration
semi-smooth Newton: subsystem (principal minor)
IPM: modified, same-size system

Goals:
small # of outer iterations (prefer mesh-independence)
here: fast solvers for the linear systems:
# of linear iterations to decrease with increasing
resolution
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Primal-dual interior point methods

For fixed resolution Vh:

solve perturbed KKT system for µ ↓ 0:

(βW + K T WK )u − v = −K T Wf
u · v = µe
u, v > 0

Mehrotra’s predictor-corrector IPM

(βW + K T WK )∆u − ∆v = rc

V∆u + U∆v = ra

reduced system

(βW + U−1V + K T WK )∆u = rc − U−1ra

with U, V diagonal, positive
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The systems

the matrix: (βW + U−1V + K T WK )

U−1V represents a relatively smooth function

need to invert
(Dβ+λ + W−1K T WK

︸ ︷︷ ︸

K∗K

)

with Dβ+λ = βI + W−1U−1V

... and further

D√
β+λ(I + W−1AK T WKA

︸ ︷︷ ︸

(KA)∗(KA)

)D√
β+λ

with A = D√
1/(β+λ)
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The systems

Need good preconditioner for

Gh = I + (KhAh)
∗(KhAh) = I + (Lh)

∗(Lh)

with Ah = D√
1/(β+λh)

Assume λh = interpolate(λ)

Lh
def
= KhAh

L def
= KD√

1/(β+λ)
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Key facts

Gh = I + Lh
∗Lh is dense, available only matrix-free

cond(I + Lh
∗Lh) = O(β−1), mesh-independent, large

Ah = D√
1/(β+λh)

neutral with respect to smoothing

L(h) = K(h)A(h) same smoothing properties as K(h)
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Two-grid preconditioner

Scale separation:

Vh =

“smooth“ functions
︷︸︸︷

V2h ⊕
“rough“ functions

︷︸︸︷

W

π = π2h = L2−projection onto V2h

Gh = (π + ρ)(I + Lh
∗Lh)(π + ρ) ≈ ρ + π(I + Lh

∗Lh)π
| {z }

≈G2hπ

Preconditioner

Gh ≈ Mh
def
= ρ ⊕ G2hπ

Mh
−1 = ρ + G2h

−1π
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Two-grid preconditioner

Theorem (A.D. and C.P., 2009)

On a uniform grid

ρ(I − Mh
−1Gh) ≤ Ch2||(β + λ)−

1
2 ||W 2

∞

Remarks:

optimal order in h

quality expected to decay as µ ↓ 0 since λ only L2 in general

for fixed β # linear iterations/outer iteration expected to decrease
with h ↓ 0

Mh is slightly non-symmetric
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Multigrid preconditioner

Multigrid preconditioner definition:

Lh
def
= NGh

(L2hπ + ρ)

where
NGh

(X )
def
= 2X − X · Gh · X
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In vitro system I: backwards advection-diffusion

K = S(T ), λ(x) = sin(πx)

dσ(G, M) = max{| ln λ| : λ ∈ σ(G, M) }

Table: approx. dσ ≈ ρ(I − M−1
h Gh)

h \ β 1 0.1 0.01
dσ rate dσ rate dσ rate

1/80 0.0206 0.1127 0.2812
1/160 0.0066 3.1342 0.0363 3.1078 0.1270 2.2140
1/320 0.0020 3.3140 0.0102 3.5488 0.0445 2.8535
1/640 0.0006 3.5199 0.0027 3.7365 0.0123 3.6284
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In vitro system II: elliptic-constrained problem

K = −∆−1, λ(x) = sin(πx)

dσ(G, M) = max{| ln λ| : λ ∈ σ(G, M) }

Table: approx. dσ ≈ ρ(I − M−1
h Gh)

h \ β 1 0.1 0.01
dσ rate dσ rate dσ rate

1/80 8.66e-003 5.03e-002 2.21e-001
1/160 2.15e-003 4.0318 9.20e-003 5.4691 8.23e-002 2.6782
1/320 5.36e-004 4.0106 1.18e-003 7.7656 2.61e-002 3.1517
1/640 1.34e-004 4.0039 1.91e-004 6.2046 6.51e-003 4.0161
1/1280 3.35e-005 4.0016 4.86e-005 3.9275 1.07e-003 6.0762
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Backwards advection-diffusion problem example

Optimal control problem

minimize 1
2 ||S(T )u − f ||2 + β

2 ||u||2
subj to: u ∈ L2(Ω), 0 ≤ u ≤ 1

(3)

u(·, t) transported quantity subjected to:






∂tu −∇ · (a∇u + bu) + cu = 0 on Ω
u(x , t) = 0 for x ∈ ∂Ω, t ∈ [0, T ]
u(x , 0) = u0(x) for x ∈ Ω

K = S(T ): initial - to - final

S u0 = S(T )u0
def
= u(·, T )
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Solution
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Iteration count / predictor-step linear systems
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Evolution of quantities of interest

Evolution of ||λ−

1
2 ||W 2

∞

, µ, and last λh:
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Another measure of success

Total number of finest-level mat-vecs (application of K )

h \ levels 1 2 3
1/1024 728 581 661
1/2048 740 463 489
1/4096 764 403 425
1/8192 768 377 403
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Elliptic-constrained problem

minimize 1
2 ||y − f ||2 + β

2 ||u||2
subj to: −∆y = u, −1 ≤ u ≤ 1

∆f = 3
2 sin(2πx) sin(2πy), β = 10−6
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Iteration count / predictor-step linear systems
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Mat-vecs count

Total number of finest-level mat-vecs (Poisson solves)

h \ levels 1 2 3 4
1/256 354 282 572 –
1/512 355 220 250 452
1/1024 355 198 210 224
1/2048 363 172 174 174
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Current and future directions

Inverse systems of semilinear advection-reaction-diffusion
equations (Saraswat, N. R. Lee)

Inverse hyperbolic problems (Hill, J. Lee)

State constrained problems

Long-term goal: efficient solution of large-scale data
assimilation problems (4D Var method for weather and
climate modeling)
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Multigrid preconditioner
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