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1 Markovian semigroups and infinitesimal gen-

erators

Jump-diffusions. A recurring theme in applied prob-

ability is distinguishing between two possible sources of

uncertainty: small continuous changes modeled by dif-

fusion, and ”catastrophic” changes modeled by a jump

process. To resolve this issue, one uses jump-diffusions

models, i.e. solutions of a SDE (stochastic differential

equation)

dXt = φ(Xt)dt + σ(Xt)dBt − dSt (1)

where

• Bt is standard Brownian motion,

• St is a pure jump process, with a ”Levy density”

ν(x, z) := λ(x) b(z), which may arise for example

from i.i.d. jumps Ci (sometimes one sided, for exam-

ple negative), whose density, distribution, comple-

mentary distribution and first moment are denoted

respectively by b(x), B(x), B̄(x), b1.

The first two terms (the drift φ and the variance σ)

of the Levy-Khinchine triple φ, σ, ν define a continu-

ous diffusion process, and the last term defines a pure

jump/convolution process.
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Jump-diffusions (1) give rise to Markovian semi-

groups of transition operators with associated evolu-

tion/backward Kolmogorov equation

∂f (x, t)

∂t
= Gxf (x, t), f (x, 0) = f0(x), (2)

which describes ”expectations evolving in time”

f (t, x) = EX0=xf0(Xt).

The infinitesimal generator § operator is given by

Gf (x) = Gxf (x) = φ(x)f ′(x) +
σ2(x)

2
f ′′(x) + (3)∫ ∞

−∞
(f (x− z)− f (x))ν(x, z)dz

= G(d)f (x) + G(j)f (x), (4)

for any twice continuously differentiable and bounded

function f (x), where the second part G(j)
x is associated

to the pure jump convolution part.

Remark 1. Note that in the simplest case of ran-

dom walks, i.e. Markovian processes with discrete

state spaces, the semigroups are simply matrix expo-

nentials.

Lie theory would seem to be ”taylor made” for deal-

ing with the more complicated jump-diffusion processes
§This term seems to originate with Lie.
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(1), whose generators (3) combine generically non-

commuting operators.

Indeed, while the operator semigroup may still be

written formally as et(G
(d)+G(j)), computing it in terms

of the two individual semigroups becomes more com-

plicated.

One important example of diffusions, already studied

in Kolmogorov’s founding paper [57], is that of hyperge-

ometric diffusions with quadratic variance and linear

drift:

G(d)f (x) :=
(
a2x

2 + a1x + a0
) ∂2f

∂x2
+ (φ1x + φ0)

∂f

∂x
.

The Levy model is obtained when the variance and

drift rates as well as the Levy intensity ν(x, z) are inde-

pendent of x.

Example 1. The Cramér Lundberg risk model

(1903) [71] , one of the most studied models in ap-

plied probability, describes the surplus of an insurance

company:

U(t) = u + c t− S(t) := u + c t−
N(t)∑
i=1

Ci (5)

with initial capita u, linear premium rate/drift c t and

”claims” Ck, modeled by a sequence of i.i.d. posi-

tive random variables with a common density f (x) =
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fC(x), and which arrive at the increase points N =

{Nt, t ≥ 0} of an independent counting process with

ENt = λt. If moreover Nt is a Poisson process with

exponential interarrival times, than S(t) is a com-

pound Poisson process with positive summands, and

U(t), t ∈ R+ is Markovian.

2 The importance of Lie algebras in analysis

The relevance of finitely generated Lie algebras for solv-

ing differential systems was discovered by Lie, who estab-

lished the equivalence of superposition principles for

first order nonautonomous systems to that of a Lie alge-

bra so that Gx ∈= g. Furthermore, other algebra fea-

tures play a role: for example the solvability of the Lie

algebra implies integrability by quadratures of the system

in the sense of Liouville – see [?] .

The first question of interest for Markovian semigroups/Lie

groups is the explicit computation of the transition oper-

ators. Similarly with with Lie’s celebrated superposition

theorem, this is possible precisely when the infinitesimal

generator satisfies that

Gx ∈= g = {
I∑

i=1

ciG
(i)}
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for some Lie algebra g.

Then, one may compute the exponential of each gen-

erator G(i)G(i) separately, and then combine them via

formulas like Baker-Campbell-Haussdorff-Dynkin or Wei-

Norman’s.

Informately, we must be able to break the infinitesimal

generator as a linear combination of a finite number of

terms, which give rise to a finitely generated Lie algebra

under commutation and scalar multiplication.

Example 2. Consider the elementary example of Brow-

nian motion with drift with associated generator

Gxf =
1

2

∂2f

∂x2
+ c

∂f

∂x
.

Since the two operators D and D2 commute, the

resulting exponential etGf (x) may be decomposed as

etGf (x) = etcDet
D2

2 f (x) =

etcD
∫ ∞

−∞
f (x + y)φ(

y√
t
)dy =

∫ ∞

−∞
f (x + ct + y)φ(

y√
t
)dy

where ϕ(u) is the standard normal density.

The hypergeometric/KWP Lie algebra. For
hypergeometric processes with affine drift and quadratic volatil-
ity, the ”finite computation” of the Lie group amounts to check-
ing whether there exists a nilpotent Lie algebra containing the
five components D, xD,D2, xD2, x2D2 of Gx and the identity I.
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This is easily seen to be the case for OU processes gen-

erated by I,D, xD,D2, even after the addition of the killing

terms x, x2, ..., xn (and in particular, the killed transition density

p(t, x, y) may be written down explicitly using Wei-Norman).

The full KWS family is not solvable, however. Indeed, let

us build the Cartan matrix of commutators, using Leib-

niz’s rule [a, bc] = [a, b]c + b[a, c] and its consequence

[a, b] = 1 =⇒ [a, bn] = nbn−1, with a = D, b = x and

a = −x, b = D:
. . . xn D xD D2 xD2 x2D2

xn 0

D nxn−1 0 D 0

xD nxn −D 0 −2D2 −xD2 0

D2 n(n− 1)xn−2 + 2nxn−1D 0 2D2 0

xD2 n(n− 1)xn−1 + 2nxnD −2D2 xD2 −2D3 0

x2D2 n(n− 1)xn + 2nxn+1D −2xD2 0 −2D2 − 4xD3 −2xD2 − 2x2D3 0

We note that the commutators of the first three operators

belong to their vector space (and, as noticed in [86], this

continues being the case if one adds the killing operators

x and x2), but this stops being the case when xD2 is

added.

Q:Note that only few Lie algebras are nilpotent/solvable.

An interesting ”intermediate” case is provided by the

affine diffusions generated by D, xD,D2, xD2, for which

the evolution semigroup is not nilpotent (nor solvable by

quadratures), but for which the equations

V̂t(t, s) = ĜV̂ (t, s) + ĥ(s)
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obtained by Laplace transforming in x may be solvable.

It seems that the ”Laplace dual operators” arising by

taking Laplace transform are often ”more solvable” than

the original ones.

3 First passage problems

Denote by

τ+L = inf{t ≥ 0; Xt > L}
τ = τl = inf{t ≥ 0; Xt < l}

the first passage times of a stochastic process above/below

given levels L, l. Computing the distribution of the lat-

ter, also called ”ruin time” in the insurance literature,

is one of the oldest applications of probability, intro-

duced by Thiele, the founder of the Danish insurance

company Hafnia (1872) –see www.stats.ox.ac.uk/ stef-

fen/seminars/centertalk.pdf.

Ruin probabilities. The first objects of interest

in first passage theory are the ”finite-time” and ”ulti-

mate/infinite horizon” ruin probabilities Ψ(t, x) and the

related ”survival” probabilities Ψ(t, x)

Ψ(t, x) = Px[τ ≤ t], Ψ(x) = Px[τ < ∞],

Ψ(t, x) = Px[τ > t] = 1− Ψ(t, x), Ψ(x) = Px[τ = ∞]
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For the Markovian case, a first step/infinitesimal anal-

ysis shows that the ultimate ruin probabilities are har-

monic functions, satisfying:

GΨ(u) := σ(x)2

2
Ψ′′(u) + φ(x)Ψ′(u)− λΨ(u) +

λ

∫ u

0

Ψ(u− z)fC(z)dz + λF̄C(u) = 0

Ψ(u) = 1, u ≤ 0. (6)

The evolution equation (2) and the corresponding time-

independent counterparts, the invariant measure and the

harmonic functions of interest in first passage theory, have

been intensively studied for diffusions and for Levy

processes.

4 Piecewise deterministic processes

We study below the family of Levy driven Langevin (LL)

jump processes [39]

dXt = φ(Xt)dt + dUt. (7)

When Ut is a compound Poisson process, they re-

duce to the simpler family of piecewise determin-

istic processes. Particularly interesting is the case of
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phase-type distributed jumps

F̄C(x) =

∫ ∞

x

fC(u)du = βeBx1,

whereB is a n×n stochastic generating matrix (nonnega-

tive off-diagonal elements and nonpositive sow sums), and

β = (β1, . . . , βn) is a row probability vector (with non-

negative elements and
∑n

j=1 βj = 1), and 1 = (1, 1, ..., 1)

is a column probability vector.

The Laplace transform of phase-type jumps is

b̂(s) = β(sI −B)−1b,

with b = (−B)1. In this case, the convolution term

from the Feynman-Kac integro-differential equation (6)

may be written formally as

β(sI −B)−1b|s=D

and it may be removed by applying the differential oper-

ator det(sI −B)|s=D .

Example 3. Consider the case of downward exponen-

tial jumps of rate µ over an exponential horizon eq,

when the ruin probability solved the ODE

[φ(x)D − λ− q + λ
µ

µ +D
]Ψ(x) + λe−µx = 0 ⇔

[(µ +D)(φ(x)D − λ− q) + λµ]Ψ(x) =

[φ(x)D2 + (µφ(x) + φ′(x)− λ− q)D − µq]Ψ(x) = 0
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Remark 2. We will restrict to first-passage problems

in domains where the drift φ(x) doesn’t change sign,

which implies then the boundary conditions Ψ(l) = 1,

provided that the drift goes towards the boundary.

There is also a probabilistic conversion to a related

continuous embedding process, which yields for ruin

probabilities with downward jumps the ODE linear

system(
Ψ′(x)

M′(x)

)
=

(
λ+q
φ(x) − λ

φ(x)β

b B

)(
Ψ(x)

M(x)

)
, (8)

The variable Ψ is the killed ruin probability, q is the

killing rate/Laplace transform argument, b = −B Id is

a column vectors, and the componentsM1, . . . ,Mn of the

column vector M are killed ruin probabilities in ”auxil-

iary stages of artificial time,” introduced by changing the

jumps to segments of slope ±1.

5 Exponential jumps

Example 4. The ”embedding linear system” (8) in

this case is:(
Ψ′(x)

M ′(x)

)
=

(
λ+q
φ(x) − λ

φ(x)

µ −µ

)(
Ψ(x)

M(x)

)
(9)
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When q = 0, the system :

Ψ′(x) =
λ

φ(x)
(Ψ(x)−M(x)) Ψ(∞) = M(∞) = 0

M ′(x) = µ (Ψ(x)−M(x)) M(0) = 1

may be solved by substracting the equations, yielding:

Ψ(x)−M(x) = (Ψ(0)−M(0))eZ(x), Z(x) = −µx +

∫ x

0

λ

φ(v)
dv

M(x) = µ(1− Ψ(0))

∫ ∞

x

eZ(v)dv (10)

and

Ψ(x) = M(x)+(Ψ(x)−M(x)) = (1−Ψ(0))

(
µ

∫ ∞

x

eZ(v)dv − eZ(x)
)

whenever Z(∞) = −∞.

Alternatively, in terms of the alternative ”Riccati

variable” η(x) := Ψ(x)
M(x) –see below we find

µ(1− η(x)) =
eZ(x)∫∞

x eZ(v)dv
§ (11)

This calculation raises the question of whether Segerdahl’s

equation (9) (or from Example 3) is solvable by quadra-

tures when q > 0. The natural framework for examining

this is Lie’s theory, which states that for nonautonomous

systems of the form (8) to be integrable by quadratures,
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there must exist a ”Lie system”, i.e. a finitely generated

(Vessiot–Guldberg) Lie algebra g such that

Ax ≡

(
λ+q
φ(x) − λ

φ(x)β

b B

)
=

λ

φ(x)

(
1 + q/λ −β

0 0

)
+

(
0 0

b B

)
∈ g, ∀x ∈ R,

(12)

which is moreover solvable.

With exponential jumps and q = 0, integrability is

determined by the family of matrices

Ax ≡

(
λ

φ(x) − λ
φ(x)

µ −µ

)
=

λ

φ(x)

(
1 −1

0 0

)
+µ

(
0 0

1 −1

)
=

λ

φ(x)
T1+µT2, x ∈ R,

where

T1 =

(
1 −1

0 0

)
, T2 =

(
0 0

1 −1

)
.

These matrices satisfy [T1, T2] = −T1 − T2 and span

a two dimensional solvable Lie algebra V = ⟨T1, T2⟩,
and the model is therefore integrable by quadratures, as

known since Segerdahl. We show in Theorem 1 that this

stops being the case when q ̸= 0.

Theorem 1. When q ̸= 0, and for a non-constant

drift φ(x), the matrices Ax span the non-solvable

Lie algebra gl(2,R) of 2× 2 real matrices.
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Proof. Our Lie algebra must contain Ax = λ/φ(x)U1 +

µU2, where

U1 =

1 + q/λ −1

0 0

 , U2 =

(
0 0

1 −1

)
,

Consider the matrices

U3 ≡ ([U1, U2] + U2 + U1)λ/q + U2 =

1 0

0 −1

 ,

U4 = [U1, U3] + U2 =

0 2

0 0

 .

For every Lie algebra g such that {Ax}x∈R ⊂ g, the ma-

trices U1, U2, U3, U4 must be contained in g, as they are

made up from Lie brackets and linear combinations of el-

ements of g. Moreover, as q ̸= 0, the matrices U1, U2, U3

and U4 are linearly independent and they span gl(2,R).
It follows that gl(2,R) ⊂ g. Consequently, the Lie alge-

bra g is not solvable.

6 The Riccati approach

An alternative approach is to write the linear system (8)

in the coordinate system {η = Ψ/M,M}, bringing it to
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the form
dη

dx
= −µη2 +

(
µ +

λ + q

φ(x)

)
η − λ

φ(x)
,

dM

dx
= (η − 1)µM.

(13)

The above non-linear system is made up from a homoge-

neous equation in the variable M and a Riccati equation

in the variable η (with no dependence on the variableM),

which will be called below Segerdahl’s equation.

After the substitution y(x) = µ(η(x)− 1) and the ho-

mogenizing substitution y(x) = g′(x)
g(x) , the Riccati equa-

tion and it homogeneous counterpart are brought to the

canonical forms

y′(x) = −y2(x) + y(x)(
λ + q

φ(x)
− µ) +

qµ

φ(x)
(14)

⇔ g′′(x)− z(x)g′(x)− u(x)g(x) = 0,

where

z(x) =
λ + q

φ(x)
− µ, u(x) =

qµ(z(x) + µ)

λ + q
. (15)

Note that when q = 0, equation (15) becomes essen-

tially of first order g′′(x) − g′(x)z(x) = 0, and g′(x) =

eZ(x), with Z(x) =
∫
z(x)dx, recovering Segerdahl’s re-

sult, see example 4.
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Remark 3. Note that having an explicit general so-

lution η(x) to the Riccati equation of the system (14)

leads to an explicit general solution of the system, ob-

tained by

M(x) = L exp

(∫ x

η(t)dt− µx

)
,

where L is an arbitrary constant. Thus, the solution

of the first-passage problem will be available analyti-

cally (up to quadratures), whenever the Riccati solu-

tion is.

6.1 The Allen-Stein family

Theorem 2. The necessary and sufficient condition

for the existence of a transformation

η′ = G(x)η, G(x) > 0,

relating the Riccati equation

dη

dx
= b0(x) + b1(x)η + b2(x)η

2 , b0b2 ̸= 0, (16)

to an integrable one given by

dη′

dx
= D(x)(c0 + c1η

′ + c2η
′2) , c0c2 ̸= 0 (17)
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where c0, c1, c2 are real numbers and D(x) is a non-

vanishing function, are

D2c0c2 = b0b2,

(
b1 +

1

2

(
ḃ2
b2

− ḃ0
b0

))√
c0c2
b0b2

= κc1,

(18)

where κ = sg(D) = sg(b0/c0). The transformation is

then uniquely defined by

η′ =

√
b2(x)c0
b0(x)c2

η .

Roughly speaking, the above theorem claims that Ric-

cati equations of the form (17) can be integrated if their

coeffients b0, b1, and b2 verify the condition (19).

The Riccati equation in our system (14) can be cast

into the form (17), with

b0(x) = − λ

φ(x)
, b1(x) =

(
µ +

λ + q

φ(x)

)
, b2(x) = −µ.

(19)

Substituting the above functions in the Allen-Stein inte-

grability condition (19), we get that Riccati equation (14)

is integrable if the drift φ(x) satisfies the equation

φ̇/2 + (λ + q) + µφ = κc1
√

−µλ c0c2φ (20)

For example, in the particular case c1 = 0, the above
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integrability condition reads

φ̇ + 2µφ + 2(λ + q) = 0, (21)

whose general solution, φ0(x), is

φ0(x) =
λ + q

µ

(
Ke−2µx − 1

)
,

with K a nonzero real constant.

An explicit solution for the classical ruin problem, i.e.

the solution of the above system with initial conditions

Ψ(∞) = M(∞) = 0 and M(0) = 1, follows.


Ψ(x) =

1

(1 +K1)

√
λ

q + λ
(e2xµ −K)−1/2(ex

′(x) −K1e
−x′(x)),

M(x) =
1

(1 +K1)
e−µx(K1e

−x′(x) + ex
′(x)).

 ,

where

dx′ =

√
−λµ

φ0(x)
dx =⇒

x′(x) =
1

2

√
λ

q + λ
log

(∣∣∣∣∣1−
√
|1−K|√

|1−K| + 1

√
|1− e−2xµK| + 1

1−
√

|1− e−2xµK|

∣∣∣∣∣
)
.
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7 Quasi birth and death processes (QBD)

Many important stochastic models involve multidimen-

sional random walks whose coordinates split naturally

into an infinite valued coordinate ℓ called level, and the

”rest of the information” k, called phase, which takes a

finite number of possible values.

Partitioned according to the level, the infinitesimal

generator Q of such a Markov process, is a block tridi-

agonal matrix, called level-dependent quasi-birth-and-

death generator (LDQBD):

Q =


B0 A0

C1 B1 A1

C2 B2 A2
. . . . . . . . .

 . (22)

QBD processes share the ”skip free” structure of birth

and death processes; however, the ”weights” Aℓ, Bℓ, Cℓ

associated to each step are now matrices, inviting one to

enter the noncommutative world.

The semigroup. The strongest solvability concept

for continuous time Markov processes is that of the semi-

group of operators etQ. Besides the straightforward case

with analytically describable spectrum of Q, this may

also be achievable by Lie algebra methods, if the gen-
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erator Q may be decomposed as a sum of op-

erators which generate a nilpotent Lie algebra.

While this happens very rarely, exceptions do however ex-

ist, as shown recently by Kawanishi [?], who considered

a special multi-server queueing model with two exponen-

tial stages of service of rates µ, µ2, and arrival/impatience

rates λ, θ, resulting in a QBD with boundary (see section

7 of [?]), followed by square blocks of size (c + 1) which

depend on the level only along the diagonal:

Aℓ = A =


λ . . . . . . 0 0

0 λ . . . 0 0

0 . . . . . . 0 0
... . . . . . . 0 ...

0 . . . . . . 0 λ

 Cℓ =


ℓθ 0 . . . 0

µ2 ℓθ 0 . . .

0 . . . . . . ...

0 . . . cµ2 ℓθ



Bℓ =


∗ cµ 0 0 . . . 0

0 ∗ (c− 1)µ 0 . . . 0

0 ∗ . . . . . . 0
... . . . . . . . . . . . . µ

0 · · · · · · · · · ∗

 , Tℓ =


−cµ cµ 0 0 0

µ2 ∗ (c− 1)µ . . . 0

0 2µ2 ∗ 2µ 0

0 0 . . . ∗ µ

0 0 0 cµ2 −cµ2


Kawanishi noticed that generator maybe expressed in

terms of ”simple” matrices with a closed ”multiplication
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table”

E+ =


0 c

0 c− 1
. . . . . .

0 1

0

 , E− =


0 0

1 0 0
. . . . . . . . .

c− 1 0 0

c 0

 ,

E−T+ =


0 0

1 0

2 0

3 0

4

 , [E+, E−] =


c 0

c− 2 0
. . . 0

−c


(where [A,B] = AB − BA is the commutator) which

generate a famous nilpotent Lie algebra. However, this

model has also explicit eigenvalues (and potentially an ex-

plicit RG factorization?), rendering Lie algebra methods

unnecessary here.

Even when the semigroup is not available analytically,

one may hope for analytic formulas for the stationary

or first passage probabilities, as indeed demonstrated by

several recent results on retrial queues.

Stationary distributions. One problem of great

interest for level dependent QBD processes is that of com-

puting the stationary distribution π = (π0,π1,π2, . . .)

partitioned by level, whereπℓ = (πℓ,0, πℓ,1, . . . , πℓ,c). The
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equilibrium equations

πQ = 0 (23)

in partitioned form yield the second degree vector recur-

sion:

πℓ−1Aℓ−1 + πℓBℓ + πℓ+1Cℓ+1 = 0; ℓ = 0, 1, 2, · · ·
(24)

where π−1 is a vector of 0’s.

The ”matrix analytic” approach of Neuts is to

reduce (25) to a first degree recursion

πℓ = πℓ−1Rℓ−1.

For an irreducible ergodic process, there will be a unique

up to normalization matrix-product form solution

πℓ = π0R0R1 · · ·Rℓ−1, ℓ = 1, 2, . . . , (25)

for certain matrices Rℓ, where π0 is the solution (unique

up to multiplication by a constant) to

π0(B0 +R0C1) = 0. (26)

An alternative for finite state space is to run the ”re-

versed recursion”

π0 = πℓRℓRℓ−1 · · ·R1, ℓ = 1, 2, . . . , (27)

for certain matrices Rℓ.
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The matrices Rℓ have been computed numerically via

various methods, like cyclic and logarithmic reduction,

etc. We will consider instead the possibility of obtaining

analytical answers via Gaussian elimination.

8 The RG Factorizations

Gaussian elimination of a tridiagonal generator ma-

trix Q yields the LU/UL factorizations:

Q = (I−RL)


U0 A0

U1 A1
. . . . . .

Uℓ Aℓ
. . . . . .

 = (I−RU)


U0

C1 U1
. . . . . .

Cℓ Uℓ
. . . . . .


see for example Faddeev and Fadeeva (Chapter 1, Section

1.13, p. 24), where

RL =


0

R1 0
. . . . . .

RN 0
. . . . . .

 , RU =


0 R0

0 R1
. . . . . .

0 RN
. . . . . .

 ,

where Rj,Rj are precisely the recursion matrices appear-

ing in the first order recurrences (26), (28).
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The U matrix U0 = B0+R0C1, and more generally

the matrices

Uℓ = Bℓ +RℓCℓ+1 := Bℓ + Vℓ

have a crucial probabilistic interpretation of transition

rates within level ℓ of the process ”censored above”, i.e.

observed only on levels inferior or equal to ℓ. The matri-

ces Vℓ := Uℓ−Bℓ yield thus the rates of transition ”after

returning from an excursion above”.

A similar decomposition

Uℓ = Bj +RℓAℓ−1 := Bj +Vℓ

is available for the process ”censored below”, and finally

Ũℓ = Bj + Vℓ +Vℓ

decomposes the transition rates of the process ”censored

both above and below”. Note these are (semigroup) gen-

erating matrices.

The matrices Ũℓ are particular cases of ”stochastic

complementations” of C. Meyer (1989) [?], or rather stochas-

tic completions, the latter name being inspired by the

property

Ũℓ 1 = 0§.
§Note also the equations

(Uℓ +Al)1 = 0, (Uℓ + Cl)1 = 0,

which must hold, to ensure the 0 row-sums for the generators of the ”censored” processes.
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The stochastic completion concept is the basis of the

uncoupling/aggregation approach of splitting the deter-

mination of the stationary distribution into that of the

”intra-level” stationary distributions, provided by Ũℓ
§

and that of the stationary distribution of the levels, and

which parallels the idea behind the matrix analytic ap-

proach.

The R-G factorizations. One very attractive com-

putational approach for QBD’s are the block RG LDU

and UDL factorizations, which compute besidesRℓ,Rℓ

also the matrices Uℓ,Uℓ and also the matrices Gℓ,Gℓ

which represent probabilistically the hitting distributions

on the level below and above. The systematic use of the

factorizations seems to have started only recently – see

for example Quan-Lin Li and Jinhua Cao (2006) [?]– and

these authors trace their first appearance in applied prob-

ability back to D. B. Hajek (1982) and D. Gaver, P.A.

Jacobs and G. Latouche (1984) [?, ?, ?].

Theorem 3. The generating matrice of a QBD pro-

cess admits a LDU R-G factorization and an UDL

R-G factorization given respectively by:

LDU: Q = (I −RL)ULDU(I −GU) (28)

UDL: Q = (I −RU)UUDL(I −GL) (29)
§for example when ℓ = 0, Ũ0 = U0 is the generating matrix of the level 0, justifying

(27)
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whereULDU = diag(U0,U1, · · · ,Uℓ, · · · ),UUDL = diag(U0, U1, · · · , Uℓ, · · · )
and

GU =


0 G0

0 G1
. . . . . .

0 GN
. . . . . .

 GL =


0

G1 0
. . . . . .

GN 0
. . . . . .

 .

The off-diagonal factors Rℓ, Rℓ and Gℓ, Gℓ satisfy

respectively:

Rℓ(−Uℓ−1) = Cℓ, ℓ = 1, ... (30)

Rℓ(−Uℓ+1) = Aℓ, ℓ = 0, 1, ... (31)

and

(−Uℓ)Gℓ = Aℓ, ℓ = 0, 1, ... (32)

(−Uℓ)Gℓ = Cℓ, ℓ = 1, ... (33)

and Uℓ satisfy the recursions

Uℓ = Bℓ −RℓUℓ−1Gℓ−1 = Bℓ +RℓAℓ−1 = Bℓ + CℓGℓ−1(34)

Uℓ = Bℓ −RℓUℓ+1Gℓ+1 = Bℓ +RℓCℓ+1 = Bℓ + AℓGℓ+1(35)

Proof:

Multiplying the matrices of the LU/UL factorizations

yields respectively:
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(I−RL)ULU(I−GU) =


U0 −U0G0

−R1U0 U1 +R1U0G0 −U1G1
. . . . . . . . .

−RℓUℓ−1 Uℓ +RℓUℓ−1Gℓ−1 −UℓGℓ
. . . . . . . . .


(36)

and

(I−RU)UUL(I−GL) =


U0 +R0U1G1 −R0U1

−U1G1 U1 +R1U2G2 −R1U2
. . . . . . . . .

−UℓGℓ Uℓ +RℓUℓ+1Gℓ+1 −RℓUℓ+1
. . . . . . . . .


(37)

The equality of the secondary and main diagonals yields

then immediately the result.

�
Remark 4. The R and G matrices satisfy second or-

der recurrences, which are respectively:

Rℓ+1RℓAℓ−1+Rℓ+1Bℓ+Cℓ+1 = 0,⇔ Rℓ+1 = −Cℓ+1[RℓAℓ−1+Bℓ]
−1 ℓ = 1, ...

RℓRℓ+1Cℓ+2+RℓBℓ+1+Aℓ = 0,⇔ Rℓ = −Aℓ[Rℓ+1Cℓ+2+Bℓ+1]
−1 ℓ = 0, 1...
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CℓGℓ−1Gℓ +BℓGℓ + Aℓ = 0,⇔ ℓ = 1, ...

AℓGℓ+1Gℓ +BℓGℓ + Cℓ = 0,⇔ ℓ = 1, ...

Like any second order bilinear recurrence, these may

be solved in principle by iterating backwards the ”matrix-

continued fraction type” recursions above.

Truncation choices. While the LU factorization is

straightforward to implement recursively from its initial

condition U0 = B0, the UL factorization for infinite state

processes requires in practice truncation to a finite num-

ber of levels L, and running the recursion downwards

from L. Some ad-hoc initialization of the matrix UL,

which may also be interpreted as an ”adjustment” ren-

dering 0 the sum of the rows of truncated process censored

above L (getting thus an ergodic approximation).

Two possible adjustments are to modify the diagonal

of UL (which represents the last diagonal block in the

generator of the process censored above the level L), so

that the last rows add up to 0, by taking it as

UL = BL + AL,

or as

UL = BL +Diag(AL)
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(the same adjustments for UL will also work for UL).

We will call the latter, corresponding to just canceling

the arrivals to level L + 1 simple reflection trun-

cation. Note that for BD processes, this is the only

possible ”ergodic truncation”, and that for QBD process

with diagonal arrivals Aℓ, the two procedures coincide.

Any truncation will reduce the problem to solving a

finite linear system, which may be solved symboli-

cally! However, in level dependent problems, the results

will depend on L and on the truncation method adopted.

Consider a ”G-truncation” procedure general-

izing the classic approximations of Fallin and

Neuts-Rao

UL = BL + ALG̃L+1,K,k ⇔ ŨL = UL + ALG̃L+1,K,k(38)

where G̃L,K,k denote the first passage probabilities to

level L for the process for which K levels above L fol-

low the Neuts-Rao approximation (a fixing of the retrial

rates) and the next k levels follow the Falin approxima-

tion (changing the orbit into an instant access queue).

Note that since this requires only solving a linear first

passage system, the generalized Fallin-Neuts-Rao trun-

cation may also be implemented symbolically!

Some results with the ”simple G-truncation” G̃L,1,0 are

reported below.
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Remark 5. Even though the LU factorization pro-

duces the Uℓ, ... matrices without ad-hoc intervention,

to compute the stationary distribution we must obtain

the value of πL, and this will again require adjusting

UL so that it becomes a generating matrix; thus, a

stochastic completion of Uℓ will finally be required.

Example 5. Birth-death processes.

The LU factorization yields Gi = 1, i = 0, ...’s and

Ri = µi
λi−1

, i = 1, ... (the reciprocals of the ”classic”

R’s).

The UL factorization with ”ergodic” truncation yields

Ri =
λi

µi+1
, i = 0, ..., Gi = 1.

The ”classic” quadratic equations for R,G of the

M/M/1 queue are:

µR2 − (λ + µ)R + λ = 0, λG2 − (λ + µ)G + µ = 0,

with roots {R → 1, R → λ
µ}, {G → 1, G → µ

λ}.
In the ergodic case we have G = 1, and it follows

from −Uℓ = GC that −U = µ, and that R = ρ :=
λ
µ (the probabilistic interpretation is easily verified,

since the number of visits one level above is geomet-

ric with parameter p = ρ
1+ρ and its expectation p

1−p

simplifies to ρ).

Remark 6. The Gℓ of the UL decomposition is the

matrix of probabilities of ever moving one level below.
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More precisely

Gℓ(i, j) = P(ℓ,i)[τℓ−1 < ∞, X(τℓ−1) = (ℓ− 1, j)]

(Gℓ must be therefore a stochastic/substochastic ma-

trix, in the ergodic/nonergodic case).

Indeed, let B̃ℓ denote the matrix of transition rates

within the same level, with the diagonal set to 0, let T =

Aℓ+ B̃ℓ+Cℓ, and let Diag(T ) denote a diagonal matrix

containing the sums of the rows of T . Conditioning after

dt yields

Gℓ = AℓdtGℓ+1Gℓ+B̃ℓdtGℓ+(I−Diag(T )dt)Gℓ ⇔ AℓGℓ+1Gℓ+(B̃ℓ−Diag(T ))Gℓ+ = 0

which yields the corresponding recursion, since Bℓ =

B̃ℓ −Diag(T ).

Similarly, Gℓ of the UL decomposition is the stochas-

tic matrix of probabilities of ever moving one

level up.

Remark 7. The matrices {Rℓ}ℓ≥0 of the UL decom-

position have a more complicated probabilistic inter-

pretation – see for example [?]. The (i, j)th entry

(Rℓ)i,j of Rℓ is the expected sojourn time in the state

(ℓ + 1, j), given the process started in state (ℓ, i), be-

fore the first revisit of level ℓ, and divided by −Bℓ(i, i),

which is the expected sojourn time in the state (ℓ, i),

before leaving it.
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More precisely, the following formula holds [?]:

(Rℓ)i,j = qℓ(i, j)
Bℓ(i, i)

Bℓ(j, j)
(39)

In discrete time, the fraction equals 1 and Rℓ)i,j =

qℓ(i, j) is the expected number of visits to (ℓ + 1, j)

before returning to level ℓ, given the process started

in state (ℓ, i).

Remark 8. In the homogeneous (level independent)

case), it is clear from the probabilistic interpretations

and verifiable through algebra that the factorization

matrices will not depend on the level, and will satisfy

quadratic Riccati equations. In the UL case, these are

respectively:

R2A +RB + C = 0, R2C +RB + A = 0

CG2 +BG + A = 0, AG2 +BG + C = 0

In the asymptotically convergent case, we can ob-

tain the limits R = limnRn, G = limnGn (if they ex-

ist), via the same second order equations. One rea-

sonable strategy in the UL case is to start by comput-

ing the G limit and then, iterating backwards, the Gℓ

matrices.
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Remark 9.When Uℓ, Uℓ are invertible, the off-diagonal

factors Rℓ and Gℓ may be obtained by:

Rℓ = Cℓ(−U−1
ℓ−1), ℓ = 1, ... (40)

Rℓ = Aℓ(−U−1
ℓ+1), ℓ = 0, 1, ... (41)

and

Gℓ = −(U−1
ℓ )Aℓ, ℓ = 0, 1, ... (42)

Gℓ = −(U−1
ℓ )Cℓ, ℓ = 1, ... (43)

and Uℓ satisfy the recursions

Uℓ = Bℓ − CℓU
−1
ℓ−1Aℓ−1 (44)

Uℓ = Bℓ − AℓU
−1
ℓ+1Cℓ+1 (45)

Contents. Below, we illustrate via some examples

the fact that the RG factorization yield in a systematic

way many of the analytical results already obtained in the

literature, including calculations of Laplace transforms of

transient distributions.

We rederive via the RG factorizations the results of

Liu and Zhao [?] for the M/M/c/c retrial queue, with

c = 1, 2, by adopting a ”simple truncation”– see below.

For c = 1, 2 the truncation effect (the dependence of L)

disappears after one iteration. When ≥ 3 however, the

simple truncation Mathematica results depend on L in a
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complicated way (fractions whose degree explodes with

the truncation level).

In level independent cases however, the dependence

on L and on the truncation disappears typically after

a few iterations, yielding thus easily classic results for

priority models, Kawanishi’s model, the M/M/1 queue

with feedback, etc.

9 M/M/c/c + R retrial models

Retrial queues. An important example of QBD’s are

multiserver retrial queues, for which interesting analytic

results were obtained by Y.C. Kim (1995), B.D. Choi

& al(1998) and A. Gómez-Corral and M.F. Ramalhoto

(1999) [?, ?, ?], and more recently, by Liu and Zhao

(c = 2), and Phung-Duc & al (c = 3, 4) [?, ?] §

The retrial model with geometric loss α ≤ 1, accep-

tance p ≤ 1 and feedback β ≥ 0 is a QBD with a simple

linear dependence on the level

Aℓ = A, Cℓ = ℓC, Bℓ = B − Ã− ℓC̃

where Ã, C̃ denote the sum of the diagonals of A,C, with
§Note that it was widely believed that an explicit expression for the joint probability

distribution when c > 3 does not exist (see, for example pp.25 of [?] and also pp.288 of
[?]), and hints that this belief may be wrong appeared only recently [?, ?].
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QBD structure defined by the square blocks of size (c+1):

C =


0 ν 0 . . . 0

0 0 ν . . . 0
... . . . . . . . . . ...

0 . . . . . . . . . ν

0 . . . . . . . . . ᾱ

 Aℓ = A =


λp̄ . . . . . . 0 0

µβ λp̄ . . . 0 0

0 2µβ . . . 0 0
... . . . . . . λp̄ ...

0 . . . . . . cµβ λα


and

B =


−λp λp 0 0 . . . 0

µβ̄ −(λp + µβ̄) λp 0 . . . 0

0 2µβ̄ −(λp + 2µβ̄) λp . . . 0
... . . . . . . . . . . . . λp

0 · · · · · · · · · cµβ̄ −cµβ̄


where ᾱ = 1− α, ....

The three matrices of interest may be written as:

A = λαM + λp̄(I −M) + µβE−, C = νT+ + ᾱM,

B = µβ̄(E− − E−T+) + λp(T+ − (I −M)).

The Lie algebra they generate is not nilpotent?

Note that B is a generating matrix and that the phase

generating matrix Tℓ := Aℓ+Bℓ+Cℓ = (ℓν + λp)(T+−
(I −M)) +µ(E−−E−T+) has indeed sum of rows 0, as

it should.

We examine next the classic case α = p = 1, β = 0.
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9.1 The generating function approach to classic retrial
queues

We will consider only stable systems, with λ < cµ, which

ensures the existence of stationary probabilities. Intro-

ducing the generating function:

pk(z) =
∞∑
ℓ=0

πℓ,kz
ℓ, (46)

multiplying the equilibrium equations by zℓ, and sum-

ming up gives rise to the first order differential system:

p′(z)V (z) = p(z)U(z) (47)

where p(z) = (p0(z), · · · , pc(z)), p′(z) = (p′0(z), · · · , p′c(z)),
and V (z), U(z) are square matrices of order (c + 1):

V (z) = zC̃ − C = ν


z −1 0 . . . 0

0 z −1 . . . 0
... . . . . . . . . . ...

0 . . . . . . z −1

0 . . . . . . . . . ᾱ(z−1)
ν

 ,
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U(z) = B+(z−1)A =



−λ λ 0 0 . . . 0

µ −(λ + µ) λ 0 . . . 0

0 2µ −(λ + 2µ) λ . . . 0
... . . . . . . . . . . . . ...
... . . . . . . . . . −(λ + (c− 1)µ) λ

0 · · · · · · · · · cµ λα(z − 1)− cµ)


Remark 10. This matrix has an explicit LU decom-

position M(z) = lu where

l = I − µ

λ
EM =


1 0 0 0

−µ
λ 1 0 0

0 −2µ
λ 1 0

0 0 −3µ
λ 1

 ,

u = λ(T+ − I + zM) =


−λ λ 0 0

0 −λ λ 0

0 0 −λ λ

0 0 0 (z − 1)λ


For c = 3 for example, the differential system is
µp(1)(z) = (λ + νzD)p(0)(z),

2µp(2)(z) = (λ + µ + νzD)p(1)(z)− (λ + νD)p(0)(z),

3µp(3)(z) = (λ + 2µ + νzD)p(2)(z)− (λ + νD)p(1)(z),

(λ + 3µ− zλ)p(3)(z)− (λ + νD)p(2)(z) = 0

(48)
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Or, after multiplying by the inverse of u and using

V1(z) = V (z)u−1 =


−νz

λ
ν−νz
λ

ν−νz
λ

ν
λ

0 −νz
λ

ν−νz
λ

ν
λ

0 0 −νz
λ

ν
λ

0 0 0 0


(49) becomes
−p(0)(z) + µp(1)(z)

λ − νzp(0)′(z)
λ = 0,

−p(1)(z) + 2µp(2)(z)
λ + (ν−νz)p(0)′(z)

λ − νzp(1)′(z)
λ = 0,

−p(2)(z) + 3µp(3)(z)
λ + (ν−νz)p(0)′(z)

λ + (ν−νz)p(1)′(z)
λ − νzp(2)′(z)

λ = 0,

−p(3)(z) + νp(0)′(z)
λ + νp(1)′(z)

λ + νp(2)′(z)
λ = 0

(49)

Note from the last equation that p(c)(z) is just the

sum of the derivatives of the other unknowns – see also

the related (57).

Eliminating now p(1)(z) from the first equation of (49),

p(2)(z) from the second, etc substituting in the last equa-

tion and putting λ̃ = λ
ν , µ̃ = µ

ν yields the scalar equation

λ̃4p(0)(z) + (fz + g) p(0)′(z) +
(
cz2 + dz + e

)
p(0)′′(z)

+z2(zλ̃− 3µ̃)p(0)(3)(z) = 0 (50)

where

f = λ̃
(
3λ̃2 + 3λ̃(µ̃ + 1) + 2µ̃2 + 1 + 3µ̃

)
, g = −µ̃

(
6λ̃2 + 8(µ̃ + 1)λ̃ + 3

(
2µ̃2 + 3µ̃ + 1

))
,
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c = 3λ̃(λ̃ + µ̃ + 1), d = −9µ̃(λ̃ + µ̃ + 1), e = 3µ̃2

(note the singularities coefficient is in general zc−1(zλ̃−
cµ̃)).

Remark 11. Linear systems with polynomial coeffi-

cients may be always automatically ”uncoupled” to

triangular form, for example by Gaussian elimina-

tion, by Abramov-Zima elimination, or by Zurcher’s

algorithm, which brings the system to Frobenius block

companion matrix form. Finally, this reduces the prob-

lem to solving scalar equations with polynomial coeffi-

cients, which may be factored sometimes for example

by Maple (OreTools).

The system (48) has been solved analytically only for

c = 1, 2 –see for example [?, ?, ?], but not for higher

values.

For c = 1, the scalar equation is

p(0)(z)λ2 + (zλ− µ)νp(0)′(z) = 0 (51)

with solution proportional to

(1− ρz)−λ̃

where ρ = λ
cµ = λ

µ < 1. It follows from the last equation

in (50) that p(1)(z) is proportional to

ρ(1− ρz)−λ̃−1.
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Using p(0)(z)+p(1)(z)|z=1 = 1 yields the proportionality

constant (1− ρ)1+λ̃.

Let us review now Hanshke’s [?] solution for c = 2,

when the scalar equation is

λ3π(0)(z) + ν(zλ(2λ + µ + ν)− µ(3λ + 2(µ + ν)))π(0)′(z) + z(zλ− 2µ)ν2π(0)′′(z) = 0(52)

Putting ρz = x yields the Gauss hypergeometric equa-

tion

x(x−1)y′′(x)+[x(2λ̃+µ̃+1)−(
3λ̃

2
+µ̃+1)]y′(x)+λ̃2y(x) = 0

whose only analytic solution in the unit disk is the Gauss

hypergeometric function. This determines all unknowns

up to a proportionality constant, obtained using p(0)(z)+

p(1)(z) + p(2)(z)|z=1 = 1.

Remark 12. The fact that the retrial model is a QBD

with constant matrices A,B and a simple linear de-

pendence on the level Cℓ = ℓC implies that both the

stationary distributions and their generating functions

satisfy holonomic systems for any c. Obtaining how-

ever initial conditions is not immediate.

One possibility is of obtaining the recurrence and

values for the stationary distribution of phases

πk =
∑
ℓ

πℓ,k = p(k)(1)?
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Another would be using the fact that π(0)(z) is an-

alytic at z = 0, which provides c − 1 additional con-

straints for the initial conditions?

9.2 The G, U and R matrices

A first hint on an extra special structure here was pro-

vided by the fact that for arbitrary c, in the level in-

dependent case (with total constant retrial rate), the R

matrix intervening in the matrix-geometric solution for

the stationary distribution has all rows 0, except the last

one [?]1. Furthermore, as an immediate consequence of

(42) and of the fact only the last row in Ak is non-zero,

this remains true in the level independent case, i.e.

Rℓ =


0 0 · · · 0

0 0 · · · 0
... ... . . . ...

0 0 · · · 0

rℓ,0 rℓ,1 · · · rℓ,c

 (53)

The special structure Rℓ implies the proportionality of

πℓ to the last row of Rℓ−1.

Theorem 4. For the M/M/c retrial queue given in

(23), the stationary probability vector π can be ex-
1The constant retrial rate simplification has given rise to several ”generalized trunca-

tion” approximations (Section 2.5 of [?], [?] and [?])
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pressed as

πℓ = π0,cr0,cr1,c · · · rℓ−2,c(rℓ−1,0, rℓ−1,1, . . . , rℓ−1,c), ℓ = 1, 2, . . . ,

(54)

where π0 is uniquely determined by the equation (27)

and the normalizing condition. Alternatively,

πℓ,j = πℓ−1,crℓ−1,j

We recall now some general equations derived in [?] by

censoring, and which may also be obtained by multiplying

the matrix recurrences by conveniently chosen vectors,

and by the generating function approach.

Lemma 1. For the M/M/c retrial queue, we have,

putting νℓ = (ℓ + 1)ν.

1.

(λ + ℓν)πℓ,0 = µπℓ,1,⇔ (λ + ℓν)rℓ−1,0 = µrℓ−1,1, ℓ = 1, 1, 2, . . . .(55)

2.

rℓ,0 + rℓ,1 + · · · + rℓ,c−1 =
λ

νℓ
, ℓ = 0, 1, 2, . . . .

(56)
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3. 

λ(rℓ,1 − rℓ,c + 1)− 2µrℓ,2 − νℓ(
∑c−1

k=2 rℓ,k) + νℓ+1rℓ,c(
∑c−1

k=1 rℓ+1,k) = 0

λ(rℓ,2 − rℓ,c + 1)− 3µrℓ,3 − νℓ(
∑c−1

k=3 rℓ,k) + νℓ+1rℓ,c(
∑c−1

k=2 rℓ+1,k) = 0

... = 0

λ(rℓ,c−2 − rℓ,c + 1)− ((c− 1)µ + νℓ)rℓ,c−1 + νℓ+1rℓ,c(
∑c−1

k=c−2 rℓ+1,k) = 0

λ(rℓ,c−1 − rℓ,c + 1)− cµrℓ,c + νℓ+1rℓ,crℓ+1,c−1 = 0

(57)

Remark 13. When c = 2, the first two equations

determine already rℓ,0, rℓ,1, ℓ = 0, 1, ... as

rℓ,0 =
λ

νℓ

µ

λ + µ + νℓ
=

λ

νℓ
Gℓ(2, 1), rℓ,1 =

λ

νℓ

λ + νℓ
λ + µ + νℓ

=
λ

νℓ
Gℓ(2, 2).

The single remaining equation in 3. yields then

rℓ,c =
λ(1 + rℓ,c−1)

λ + cµ− νℓ+1rℓ+1,c−1
=

λ

µ νℓ

λ + µ + νℓ+1

λ + µ + νℓ

µνℓ + (λ + νℓ)
2

3λ + 2µ + 2νℓ+1
.

Proof. 1) Multiplying the recurrence

Rℓ(Bℓ+1 +Rℓ+1Cℓ+2) + Aℓ = 0 (58)

for theR equation by the unique eigenvector e1 := (1, 0, 0, ...)

of the eigenvalue 0 of the Cℓ matrix changes the recur-

rence into:

RℓBℓ+1e1 = 0 ⇔ (λ + νℓ)rℓ,0 = µrℓ,1 (59)

2) Multiply now the recurrence (59) by 1 := (1, 1, 1, ...).

Putting

sℓ := rℓ,0 + rℓ,1 + · · · + rℓ,c−1
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and using Bℓ+11 = (−νj,−νj,−νj, ...,−νj,−λ) yields

in the last row

νℓsℓrℓ,c − λ = (sℓ+1νℓ+1 − λ) = ... = 0, (60)

by iterating towards ∞ and using the ergodicity (this

result may be found already in [?]).

3) follows by multiplying the recurrence (59) by ei :=

(0, 0, 1, ..., 1) which sums the last i rows, i = 1, c− 1.

9.3 Symbolic factorization results for retrial queues

Figure 1: States and transitions of the M/M/3/3 retrial queue

Remark 14. The simplest family here are the Gℓ ma-

trices, which are 0, except for a last column of ones
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G(i, j) = δc+1(j) (since when the level increases, all

servers must be working). This implies that V is a

matrix of 0, except the first c elements of the last col-

umn, which equal ℓν (the row sums of Cℓ). Finally,

we obtain the rational expression (though rather com-

plicated as a function of c)

Rℓ = −Cℓ(Uℓ−1)
−1.

For the UDL factorization, the Rℓ matrices have a

special structure with only the last row nonzero

(54), as a direct outcome of the fact that if at least

one server is idle, i.e. the system starts in a state

(ℓ, i) with 0 ≤ i ≤ c − 1, the number of customers in

the orbit can not increase without making all servers

busy first, and so the return to level ℓ must happen

with 0 time spent above!

For the UDL factorization we find that the ”completion

matrices”

Vℓ = RℓCℓ+1 = AℓGℓ+1

have the first c− 1 rows and first column 0. The last non

zero row is:

Vℓ(c+1, ∗) =
(
0 vℓ

)
where νℓ = (ℓ+1)ν, vℓ = νℓrj,

and rℓ = (rℓ,0, ..., rℓ,c−1) denotes the first c elements of

the last row of Rℓ.
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Note that the matrices Gℓ(ℓ = 1, · · · , N) must have

the first column 0, since first passage transitions to the

states (ℓ, 0) is impossible, and that by the last equality in

(46), it holds that νℓ
λ rℓ equals the non zero part of the last

row of Gℓ+1. Thus, the matrices Rℓ follow immediately

from Gℓ+1, except for the corner Rℓc, c.

For c = 1, the factorization finds:

Gℓ =

(
0 1

0 1

)
∀ℓ = 1, · · · §. (61)

The matrices Rℓ(ℓ = 0, · · · , ) are:

Rℓ =

(
0 0

rℓ,0 rℓ,1

)
=

(
0 0
λ
νℓ

λ(λ+νℓ)
µνℓ

)
(62)

where νℓ = (ℓ + 1)ν.

After determining π0,1 by censoring at 0,, and the nor-

malization condition, we find:

Corollary 1. For the standard M/M/1 retrial queue,

the stationary distribution is given by

πℓ = π0,1r1,1r2,1 · · · rℓ−1,1(rℓ,0, rℓ,1)

= π0,1
(λ/µ)ℓ

ℓ!

(
ℓ∏

k=1

(λ/ν + k)

)(
µ

λ + nν
, 1

)
, n ≥ 1,(63)

§This formula is obvious probabilistically, sinceGℓ(i, 0) = 0, i = 0, 1, ∀ℓ forcesGℓ(i, 1) =
1 (algebraically, this may be checked to equal 1 from the linear system at level L, with
reflection boundary condition, and can also be easily verified to propagate to the other
levels).
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and

π0 = (π0,0, π0,1) = π0,1

(µ
λ
, 1
)
, (64)

where

π0,1 =
λ

µ

(
1− λ

µ

)λ
ν+1

.

It is easy to check that the above result is consistent

with that given on page 3 in [?].

For the M/M/2/2 retrial queue with p = α =

1, β = 0, the UDL factorization finds the exact ratio-

nal expression

Gℓ =
1

λ + µ + ℓν

 0 µ + ℓν λ

0 µ λ + ℓν

0 µ λ + ℓν

 ∀ℓ = 1, · · · ,

(65)

either via a simple reflection or a simple G-truncation § .

Based on (66), it seems natural to guess with c servers

a general perturbation expansion

a(c)(ℓ)Gℓ =

c−1∑
i=0

biℓ
iG(i) (66)

where a(c)(ℓ) is a polynomial of degree c−1 and G(i) are

constant matrices.
§Note that the last two rows must be equal, since first hitting the lower level at j = 1

or j = 2 forces the descent starting point (by retrial) to be i = 0 and i = 1, respectively,
and so G(i, j) equal the proportions of long run time spent in i = 0 and i = 1, which are

µ
λ+µ+ℓν and λ+ℓν

λ+µ+ℓν .
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Indeed, when c = 3, the G recurrence yields...

The final result for c = 2 is:

Lemma 2. For the standard M/M/2 retrial queue,

the stationary distribution is given by

πℓ = π0,2r0,2r1,2 · · · rℓ−2,2(rℓ−1,0, rℓ−1,1, rℓ−1,2)

= π0,2
1

(ℓ− 1)!

(
λ

ν mu

)ℓ−1
(

ℓ−2∏
k=0

νkµ + (λ + νk)
2

3λ + 2µ + 2νk+1

)
λ + µ + νℓ
λ + µ + ν

(rℓ−1,0, rℓ−1,1, rℓ−1,2), n ≥ 1,(67)

and

π0 = (π0,0, π0,1, π0,2) = π0,2

(
µ2

λ2

3λ + 2µ + 2ν

λ + µ + ν
,
µ

λ

3λ + 2µ + 2ν

λ + µ + ν
, 1

)
,

(68)

where

π0,2 = ....

(is determined by the normalization condition).

For the M/M/3/3 retrial queue, the Mathemat-

ica results with simple truncation are very complicated,

depending on the truncation level. However, the first
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”simple G-approximation” is pretty simple:

G̃ℓ,1,0 =


0 2µ2+3jνµ+jν(λ+jν)

(λ+µ+jν)2+µ(µ+jν)
λ(2µ+jν)

(λ+µ+jν)2+µ(µ+jν)
λ2

(λ+µ+jν)2+µ(µ+jν)

0 µ(2µ+jν)
(λ+µ+jν)2+µ(µ+jν)

(λ+jν)(2µ+jν)
(λ+µ+jν)2+µ(µ+jν)

λ(λ+jν)
(λ+µ+jν)2+µ(µ+jν)

0 2µ2

(λ+µ+jν)2+µ(µ+jν)
2µ(λ+jν)

(λ+µ+jν)2+µ(µ+jν)
λ2+2jνλ+jν(µ+jν)
(λ+µ+jν)2+µ(µ+jν)

0 2µ2

(λ+µ+jν)2+µ(µ+jν)
2µ(λ+jν)

(λ+µ+jν)2+µ(µ+jν)
(λ+jν)2+jνµ

(λ+µ+jν)2+µ(µ+jν)

 ,

suggesting that the first c elements of the last row of Rj

might be given by:

νj
λγ

(
2µ2, 2µ(λ + νj), (λ + νj)

2 + νjµ)
)

where γ = (λ + µ + νj)
2 + µ(µ + νj).

In conclusion, we find that while the truncated prob-
lems for fixed L reduce to linear systems, easy symboli-
cally, computing the limit when L → ∞ of this procedure
may be quite hard. By ”luck”, the classic results valid
when c = 1, 2 and λ0 = 0 are ”essentially” independent
of L, for several truncations.

10 Complex exponential transforms, cf. Ja-

cobson and Jensen

The classical analytical approach via Laplace transforms suffers from certain
difficulties: for example, for first-passage downwards of spectrally negative
processes, the presence of jumps up invalidated the approach, but not the
answer. One way out was to use sometimes Fourier transform instead of
Laplace transform.

Recently, a new light on these difficulties was shed by Jacobsen and Jensen
[55], in the case of generalized Ornstein-Uhlebeck processes, with a fixed
lower boundary l and L = ∞, by employing a classic method of solving
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differential equations with polynomial coefficients. This method, originating
with Poincaré, which consists in looking for solutions of the form

⊖(x) =

∫
Γ

exz⊖̂(z)dz =

∫
Γ

exzz−1⊖∗(z)dz (69)

where the ”kernel” ⊖̂(z) and the integration contour Γ are yet to be deter-
mined.

Plugging this into the equation (79), and applying the Lagrange identity
to the diffusion part operator, one finds that two conditions must be satisfied:

1. The kernel ⊖̂(z) must satisfy a ”dual Laplace” operator (83)

Ĝ⊖̂(z) = 0

2. To remove boundary effects, the integration contour Γ must be closed,
or connect zeros of the bilinear concomitant of the diffusion operator
(see for example Ince, ch VIII, XVIII [53], and [55], Prop.2).

Definition 1. Primitive killed eigenfunctions are solutions of the ”Sturm-
Liouville” equation

(G − q(x))⊖Γ(x) = 0,

which may also be represented as complex (Laplace-type) exponential trans-
forms along connected integration contours

⊖Γ(x) =

∫
Γ

⊖̂(z)exzdz

where ⊖̂(z) is a homogeneous solution of the ”dual Laplace” operator and
where the contour is chosen so that the boundary contributions cancel.

For example, ⊖̂(z) might be the usual Laplace transform, in which case
Γ would be a Bromwich contour.

Example 6. The general affine case a0 > 0, a1 > 0 may be reduced to GCIR
by choosing −a0

a1
as origin. The kernel takes different forms in the remaining

two cases:

⊖∗(x) = x−q̃

er
−1

∫ x
0

κ(u)
u

du for a1 = 0

B(x)
c
a1

+q̃−1
e−

∫ x
0

λF̂ (z)+ λ(+) F̂ (+)(z)

B(z)
dz for a1 > 0, a0 = 0

(70)
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where λ, λ+F̂ , F̂+ represent the intensities and Laplace transforms of the neg-
ative and positive jumps, and where B(x) = r + a1x (the GOU case with
a1 = q = 0 appeared already in Hadjiev [51]). Note in both cases the appear-
ance of the term

J(x) = e
∫ x
0

λF̂ (z)+ λ(+) F̂ (+)(z)

B(z)
dz,

which depends on the jump part only, with the exception of the linear term
B(x).

In the GOU case with phase-type jumps up and down, (71) becomes:

⊖∗(x) = x−q̃

K∏
k=1

(z + µk)
−λαk/r

K+∏
k=1

(z − νk)
−λ(+) α(+),k/r. (71)

Remark 15. It turns out that a ”miracle” takes place, with phase-type
jumps: the cardinality of the maximal number of linearly independent prim-
itive Sturm-Liouville functions equals that of non-equivalent integration con-
tours, and the number of possible ways of crossing the boundary downwards.
Thus a linear system may be set up, whose number of unknowns is equal with
the number of equations, which yields the Gerber-Shiu function (??)!

Note furthermore that when r > 0, the origin and the rates µk of the
phases crossing downwards give rise to singularities in (72), which suggests
for poles small circles surrounding them as integration contours, or Bromwich
contours avoiding branch cuts otherwise, while when r < 0 these produce
zeroes of the kernel ⊖∗, which allows real integration contours connecting
them to be used.

This distinction is very important, since the GOU process is stationary
or transient, depending on whether r < 0/r > 0, and the [55] paper are the
first to translate this probabilistic difference into an analytic one.

The final conclusion [55], Thm 4, is that the GS function is given by

Ex[e
−qτ+ξ(Xτ−l)] =

∑
j

cj

∫
Γj

exz⊖̂(z)dz + eξ(x−l)Ix<l,

where c = (c1, c2, ...) satisfies the system Mc = 1, with

Mi,j = (µi + ξ)

∫
Γj

⊖̂(z)

µi + z
e−lzdz.
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11 Affine processes

The moment generating function at a fixed time. Let us recall first
the essential tool of Levy semigroups, the formula of the Laplace transform
with respect to the initial position

Exe
ξ(Xt−x) = etκ(ξ),

which defines the ”symbol”/cumulant generating function κ(ξ).
As well-known, [38], the extension to affine processes requires the solution

of a generalized Riccati equation.

Lemma 3. Let Xt be an affine process, i.e. a Markovian process whose
operator has a Levy-Khinchine decomposition with coefficients affine in the
initial state:

a(x) = a0 + a1x, φ(x) = c+ rx, ν(x, z) = ν0(z) + xν1(z).

Let κ(x) denote the symbol of the Levy process X
(0)
t obtained by setting

to 0 the first order coefficients a1, r, ν1.
Let q(x) = q1x denote a linear discount function. Then, the logarithm of

the joint transform Exe
−

∫ t
0 q(Xs)ds+ξXt is also affine in the initial state x, i.e.

Exe
−

∫ t
0 q(Xs)ds+ξXt = exϕ(t,ξ)+Φ(t,ξ).

Putting

B(x) = a1x+ r, (72)

the functions ϕ,Φ can be obtained from the SDE by solving a generalized
Riccati equation

∂

∂t
ϕ(t, ξ) = a1ϕ

2(t, ξ) + rϕ(t, ξ)− q1 := ϕ(t, ξ)B(ϕ(t, ξ))− q1,

ϕ(0, ξ) = ξ (73)

and by an integration:

Φ(t, ξ) =

∫ t

0

κ(ϕ(s, ξ))ds (74)
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Example 7. For the GOU process, the Riccati equation is:

∂

∂t
ϕ(t, ξ) = rϕ(t, ξ)− q1, ϕ(0, ξ) = ξ (75)

with solution

ϕ(t, ξ) = ξert − q1
ert − 1

r
,

and
Ex

(
e−q1

∫ t
0 Xsds+ξXt−xϕ(t,ξ)

)
= e

∫ t
0 (κ(ϕ(s,ξ)))ds

With q1 = 0 we get:

Ex

(
eξXt−xert

)
= e

∫ t
0 κ(ξers)ds = e

1
r

∫ ξert

ξ
κ(u)
u

du

which appears already in Hadjiev [51].

Remark 16. While the limit limt→∞ Xt might exist or not for the GOU
process, depending on r < 0/r > 0, the quantity

Φ∞(ξ) = limt→∞

∫ t

0

κ(ϕ(s, ξ))ds =

{
r−1
∫∞
ξ

κ(u)
u
du if r > 0

−r−1
∫ ξ

0
κ(u)
u
du if r < 0

exists in both cases and will play an important role below. For example, for
any q > 0, let

Mt =

∫ ∞

0

eξXt+Φ∞(ξ)−qtξ−
q
r
−1dξ.

We may check, putting z = ξt = ξert, that

Ex[Mt] =

∫ ∞

0

exξt+Φ∞(ξt)−qtξ−
q
r
−1dξ =

∫ ∞

0

exz+Φ∞(z)z−
q
r
−1dz = M0

and furthermore that Mt is a martingale.

Q 1: Similar, but more complicated formulas, are available in the CIR
case.

Q2: Provide extensions to KWPS processes, and examine the ”solvabil-
ity” of these jump-diffusions from ”Lie’s perspective”.
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12 Double Laplace transforms for hyperge-

ometric processes

Let us consider now spectrally negative KWP diffusions with jumps, and
introduce the operator:

(GV )(x) := [
2∑

k=1

k∑
i=0

a
(k)
i xi Dk]V (x) + λ

∫ x

0

(V (x− u)− V (x))f(u)du. (76)

Consider the expected payoff at ruin

V (t, u) = E{X0=u}
(
p(Xt) 1{τ ≥ t} + w (Xτ ) 1{τ < t}

)
(77)

where u = X0 ≥ 0 are the initial reserves, and w, p represent respectively:

• The penalty at ruin w(Xτ ) with deficit Xτ , w : R−→ R−

• The reward or pay-off on survival after t years: p(Xt), P : R+→ R+.

and analyze the dividend + penalty Gerber-Shiu function Vq(x) = Wq(x) +
D(x) on an interval [0, B], which satisfies the system:

G Vq(x)− (λ+ q)Vq(x) + h(x) = 0, for x ≥ 0 (78)

Vq(0) = w(0−) if σ > 0

a(0, D)Vq(0) = −wν(0)− qp(0) + w(0−)(λ+ q)

V ′
q (B) = 1

where

wν(x) =

∫ ∞

x

w(x− u)V(du), h(x) = wν(x) + qp(x). (79)

denote the expected jump payoff starting from x and a combination of the
two payoffs.

Ignoring at first the last equation, we will solve first the system indepen-
dent of B up to a proportionality constant, to be determined finally from the
last equation.

As in classical ruin theory, the first step will be to obtain an equation for
the Laplace transform in the initial reserves, resulting in a ”Laplace dual”
operator –see (83).

54



Lemma 4. a) When B = ∞, the double Laplace transform of the expected
penalty at ruin:

V̂q(s) =

∫ ∞

0

e−sx Vq(x)dx =

∫ ∞

x=0

e−sx

∫ ∞

0

qe−qtV (t, x)dt dx (80)

satisfies for s > 0 the linear ODE:

ĜV̂q(s) := a2

(
s2 V̂q(s)

)′′
− a1

(
s2 V̂q(s)

)′
− r

(
s V̂q(s)

)′
+ (κ(s)− q) V̂q(s)

+ ĥ(s) = Vq(0) (c+ a0s− a1) + a0 V
′
q (0) = Ṽq(0) + a0w(0−)s (81)

where Ṽq(0) = Vq(0) (c− a1) + a0 V
′
q (0) and where the ”Laplace dual” oper-

ator satisfied by the Laplace transform, given by

Ĝ =
2∑

k=0

k∑
i=0

a
(k)
i (−Ds)

i[sk ] + λf̂(s) (82)

may be read out directly from the formula for G

G =
2∑

k=0

k∑
i=0

a
(k)
i xi (Dx)

k + λf(x)∗ (83)

see [53].
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