
Which first passage problems are solvable?

Florin Avram

1 M/M/c/c + R retrial models

Retrial queues. An important example of QBD’s are multiserver retrial
queues, for which interesting analytic results were obtained by Y.C. Kim
(1995), B.D. Choi & al(1998) and A. Gómez-Corral and M.F. Ramalhoto
(1999) [?, ?, ?], and more recently, by Liu and Zhao (c = 2), and Phung-Duc
& al (c = 3, 4) [?, ?] §

The retrial model with geometric loss α ≤ 1, acceptance p ≤ 1 and
feedback β ≥ 0 is a QBD with a simple linear dependence on the level

A` = A, C` = `C, B` = B − Ã− `C̃

where Ã, C̃ denote the sum of the diagonals of A,C, with QBD structure
defined by the square blocks of size (c + 1):

C =




0 ν 0 . . . 0
0 0 ν . . . 0
...

. . . . . . . . .
...

0 . . . . . . . . . ν
0 . . . . . . . . . ᾱ




A` = A =




λp̄ . . . . . . 0 0
µβ λp̄ . . . 0 0
0 2µβ . . . 0 0
...

. . . . . . λp̄
...

0 . . . . . . cµβ λα




and

B =




−λp λp 0 0 . . . 0
µβ̄ −(λp + µβ̄) λp 0 . . . 0
0 2µβ̄ −(λp + 2µβ̄) λp . . . 0
...

. . . . . . . . . . . . λp
0 · · · · · · · · · cµβ̄ −cµβ̄




§Note that it was widely believed that an explicit expression for the joint probability
distribution when c > 3 does not exist (see, for example pp.25 of [?] and also pp.288 of
[?]), and hints that this belief may be wrong appeared only recently [?, ?].
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where ᾱ = 1− α, ....
The three matrices of interest may be written as:

A = λαM + λp̄(I −M) + µβE−, C = νT+ + ᾱM,

B = µβ̄(E− − E−T+) + λp(T+ − (I −M)).

The Lie algebra they generate is nilpotent, of dimension ?
Note that B is a generating matrix and that the phase generating matrix

T` := A` + B` + C` = (`ν + λp)(T+ − (I −M)) + µ(E− − E−T+) has indeed
sum of rows 0, as it should.

The generating function approach. Introducing the generating func-
tion:

pk(z) =
∞∑

`=0

π`,kz
`, (1)

multiplying the equilibrium equations by z`, and summing up gives rise to
the first order differential system:

p′(z)V (z) = p(z)U(z) (2)

where p(z) = (p0(z), · · · , pc(z)), p′(z) = (p′0(z), · · · , p′c(z)), and V (z), U(z)
are square matrices of order (c + 1):

V (z) = zC̃ − C = ν




z −1 0 . . . 0
0 z −1 . . . 0
...

. . . . . . . . .
...

0 . . . . . . z −1

0 . . . . . . . . . ᾱ(z−1)
ν




,

U(z) = B+(z−1)A =




−λ λ 0 0 . . . 0
µ −(λ + µ) λ 0 . . . 0
0 2µ −(λ + 2µ) λ . . . 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . −(λ + (c− 1)µ) λ

0 · · · · · · · · · cµ λα(z − 1)− cµ)



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Remark 1. This matrix has an explicit LU decomposition U(z) = lu. When
c = 3,

l = I − µ

λ
EM =




1 0 0 0
−µ

λ
1 0 0

0 −2µ
λ

1 0
0 0 −3µ

λ
1


 ,

u = λ(T+ − I + zM) =




−λ λ 0 0
0 −λ λ 0
0 0 −λ λ
0 0 0 λα(z − 1)




After multiplying by the inverse of u, the system becomes:

p′(z)V1(z) = p(z)l (3)

where

V1(z) = V (z)u−1 =




−νz
λ

ν−νz
λ

ν−νz
λ

ν
λα

0 −νz
λ

ν−νz
λ

ν
λα

0 0 −νz
λ

ν
λ

0 0 0 ᾱ
λα




Note from the last equation that p(c)(z) is just the sum of the derivatives
of the other unknowns – see also the related (??).

We examine next the classic case α = p = 1, β = 0.

1.1 The classic retrial queues

We will consider only stable systems, with λ < cµ, which ensures the exis-
tence of stationary probabilities.

Since V (z) is not invertible now, it is convenient to eliminate the last com-

ponent pc(z), for example from the last equation of (3) pc(z) =
(νD)

∑c−1
i=0 pi(z)

λ
.

Letting π(z) = (p0(z), ...pc−1(z)) denote the first c unknowns, the system (3)
becomes

π′(z)
(− νzu + νu1 +

cµν

λ
l
)

= π(z)
(
λI − E−

)
, (4)

where u =




1 1 1
0 1 1
0 0 1


 , u1 =




0 1 1
0 0 1
0 0 0


 , l =




0 0 1
0 0 1
0 0 1


 .
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For c = 3 for example, the differential system (2) is





µp(1)(z) = (λ + νzD)p(0)(z),

2µp(2)(z) = (λ + µ + νzD)p(1)(z)− (λ + νD)p(0)(z),

3µp(3)(z) = (λ + 2µ + νzD)p(2)(z)− (λ + νD)p(1)(z),

(λ + 3µ− zλ)p(3)(z)− (λ + νD)p(2)(z) = 0

(5)

the system (3) is




−p0(z) + µp1(z)
λ

− νzp′0(z)

λ
= 0,

−p1(z) + 2µp2(z)
λ

+
(ν−νz)p′0(z)

λ
− νzp′1(z)

λ
= 0,

−p2(z) + 3µp3(z)
λ

+
(ν−νz)p′0(z)

λ
+

(ν−νz)p′1(z)

λ
− νzp′2(z)

λ
= 0,

−p3(z) +
νp′0(z)

λ
+

νp′1(z)

λ
+

νp′2(z)

λ
= 0

(6)

and the reduced system (4), after solving for the first derivatives, is:

π′(z) = π′(z)



− λ

zν
(z−1)λ

z2ν
(z−1)λ

z3ν
µ
zν

− λ
zν
− (z−1)µ

z2ν
(z−1)λ

z2ν
− (z−1)µ

z3ν

0 2µ
zν

− λ
zν
− 2(z−1)µ

z2ν


 (7)

There is a singularity at z = 0, and the method of solution is affected by
the type of singularity. To classify it as regular or irregular, we must switch
to a scalar form, because of the absence of a Fuchs-type criterion for systems.

********************************
Eliminating p1(z) from the first equation of (5), p2(z) from the second,

etc substituting in the last equation and putting λ̃ = λ
ν
, µ̃ = µ

ν
yields the

scalar equation

λ̃4p(0)(z) + (fz + g) p(0)′(z) +
(
cz2 + dz + e

)
p(0)′′(z)

+z2(zλ̃− 3µ̃)p(0)(3)(z) = 0 (8)

where

f = λ̃
(
3λ̃2 + 3λ̃(µ̃ + 1) + 2µ̃2 + 1 + 3µ̃

)
, g = −µ̃

(
6λ̃2 + 8(µ̃ + 1)λ̃ + 3

(
2µ̃2 + 3µ̃ + 1

))
,

c = 3λ̃(λ̃ + µ̃ + 1), d = −9µ̃(λ̃ + µ̃ + 1), e = 3µ̃2

(note the singularities coefficient is in general zc−1(zλ̃− cµ̃)).
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Remark 2. Linear systems with polynomial coefficients may be always auto-
matically ”uncoupled” to triangular form, for example by Gaussian elimina-
tion, by Abramov-Zima elimination, or by Zurcher’s algorithm, which brings
the system to Frobenius block companion matrix form. Finally, this reduces
the problem to solving scalar equations with polynomial coefficients, which
may be factored sometimes for example by Maple (OreTools).

The system (??) has been solved analytically only for c = 1, 2 –see for
example [?, ?, ?], but not for higher values.

For c = 1, the scalar equation is

p(0)(z)λ2 + (zλ− µ)νp(0)′(z) = 0 (9)

with solution proportional to

(1− ρz)−λ̃

where ρ = λ
cµ

= λ
µ

< 1. It follows from the last equation in (6) that p(1)(z)
is proportional to

ρ(1− ρz)−λ̃−1.

Using p(0)(z)+p(1)(z)|z=1 = 1 yields the proportionality constant (1−ρ)1+λ̃.
Let us review now Hanshke’s [?] solution for c = 2, when the scalar

equation is

λ3π(0)(z) + ν(zλ(2λ + µ + ν)− µ(3λ + 2(µ + ν)))π(0)′(z) + z(zλ− 2µ)ν2π(0)′′(z) = 0(10)

Putting ρz = x yields the Gauss hypergeometric equation

x(x− 1)y′′(x) + [x(2λ̃ + µ̃ + 1)− (
3λ̃

2
+ µ̃ + 1)]y′(x) + λ̃2y(x) = 0

whose only analytic solution in the unit disk is the Gauss hypergeometric
function. This determines all unknowns up to a proportionality constant,
obtained using p(0)(z) + p(1)(z) + p(2)(z)|z=1 = 1.

Remark 3. The fact that the retrial model is a QBD with constant matrices
A,B and a simple linear dependence on the level C` = `C implies that both
the stationary distributions and their generating functions satisfy holonomic
systems for any c. Obtaining however initial conditions is not immediate.
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One possibility is of obtaining the recurrence and values for the stationary
distribution of phases

πk =
∑

`

π`,k = p(k)(1)?

Another would be using the fact that π(0)(z) is analytic at z = 0, which
provides c− 1 additional constraints for the initial conditions?
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theory. Über die analytischen Methoden in der Wahrscheinlichkeitsrech-
nung, Math. Ann. 104: 415–458.

10



[58] Kolmogorov, A. N. Izbrannye trudy. Tom 2. (Russian) [Selected works.
Vol. 2] Teoriya veroyatnostei(i matematicheskaya statistika. [Probability
theory and mathematical statistics] Edited by A. N. Shiryaev. “Nauka”,
Moscow, 2005. pp. 583.

[59] Kuznetsov, Alexey (2004). Solvable Markov processes. Thesis.

[60] Kyprianou, A.E. (2006) Introductory lectures on fluctuations of Lévy
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