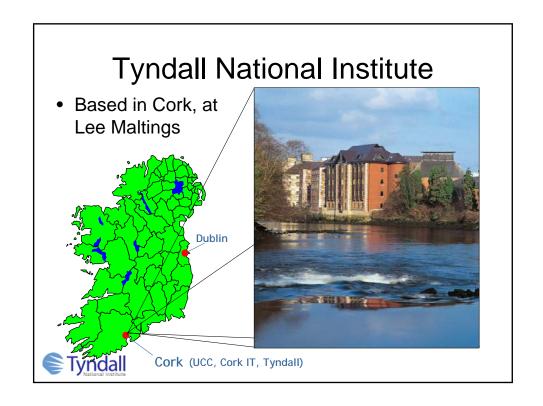


Novel Advanced Transparent Conductive Oxide:


From atoms to the systems

Mircea Modreanu

Tyndall National Institute, Cork, Ireland

Tyndall National Institute

- Established in 2004
- Brings together researchers in:
 - Photonics
 - Microelectronics
 - Nanotechnology
 - Microsystems
- Originally from the National Microelectronics Research Centre (NMRC), University College Cork (UCC) and Cork Institute of Technology (CIT)
- >350 research engineers, scientists, students, interns & support staff
- · Creates a critical mass of researchers in the field of ICT

John Tyndall, 1820 - 1893

- · Born in Leighlinsbridge, Co.Carlow 1820
- Prof. of Natural Philosophy, Royal Institution 1853
- Succeeded Faraday as Director of the Royal Institution 1863
- Initiated the practical teaching of science in schools
- Developed spectroscopy
- Invented the light pipe
- Tyndall Scattering explained why the sky is blue
- · Tyndallisation sterilisation process
- Studies of the atmosphere
 - First to explain the "greenhouse effect"

Mission

Mission Statement:

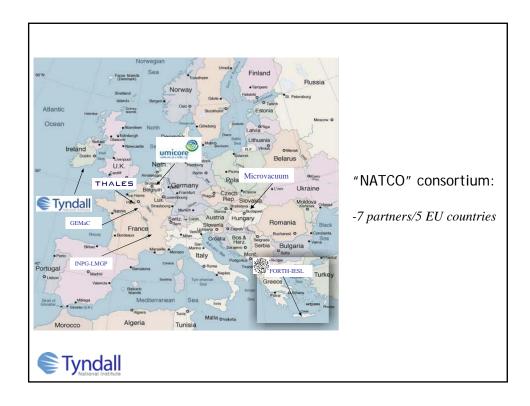
'Tyndall will be a Centre of Excellence for research, development and graduate training in Information and Communications Technology, recognised internationally for the quality of its outputs in materials, devices, systems and people, and its creation of new opportunities for Ireland's economic growth.'

Outline

- Introduction
 - FP6-IST-C STREP NATCO project methodology for the search of new TCOs
 - Basic requirements for p-type TCOs
- First Principle modelling of Cu₂O and SrCu₂O₂
 - Electronic band structure
 - Stability
 - p-type conduction mechanism
- Microstructural, vibrational and optical properties of bulk and thin films polycrystalline SrCu₂O₂
 - X-ray diffraction studies
 - Fourier Transform Infrared studies
 - Raman studies
 - Spectroscopic ellipsometry/UV-VIS-NIR spectrophotometry
- Conclusions

From Atoms To Systems: Generating Value From Research

- -Reverse the current trend of "lucky discovery" in material science
- -Discovery of material with predetermined properties than proceed to synthesis and characterisation
- -Theoretical work should coordinated with experimental work



Framework 6 Specific Targeted Research Project "NATCO"

- NATCO: Novel and Advanced Transparent Conductive Oxides
- FP6-IST-C Future and Emerging Technology
- NATCO main objective:
 - development of novel TCOs with enhanced electrical properties and tuned transparency
 - we focus on fundamentals, synthesis, characterisation, applications of $\mathit{SrCu}_2\mathit{O}_2$
 - Still much work required on SrCu₂O₂ before it can be used as a TCO
 - NATCO approach combined modelling and experiment

Current and future applications for TCOs

- Transparent electrodes in flat panel displays (ITO)
- Organic light-emitting diodes,
- Touch-screen panels,
- Electrochromic windows,
- Electromagnetic shielding,
- Solar cells,
- Transparent electronics

Basic requirements for p-type TCOs

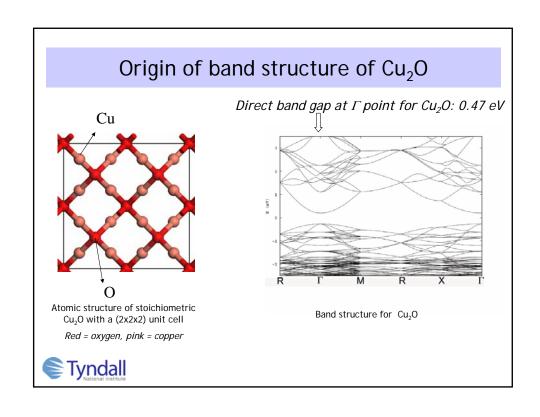
Transparent conductive oxides (TCOs) are remarkable materials: co-existence of optical transparency and of electrical conductivity

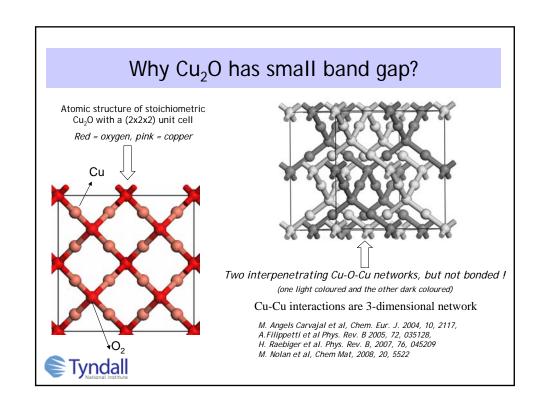
•n-type TCOs are well know: ITO

•p-type TCOS are less prevalent

-wide band gap, $E_g > 3.1 \text{ eV}$ -no interband transition less than 3.1eVTransparency

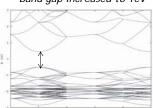
-the ability to degenerately dope the oxide host with carrier concentration in excess of 10¹⁸cm⁻³
-highly dispersed valence band


-First report on p-type TCOs thin films, CuAIO₂, H. Kawazoe et al (Nature 389, 939, 1997)



NATCO methodology for new TCOs

- -Choice of prototype material: NATCO choice was Cu₂O
- -First principles modeling is used for a better understanding of the mechanism behind the p-type TCO properties of the prototype material
- -First principles studies of doping and alloying $\mathrm{Cu_2O}$ prototype to propose new p-type TCO candidates
- -In depth studies of optical, microstructural and electrical properties of p-type TCO candidates, both as bulk and as thin films


Why Cu₂O have small band gap?

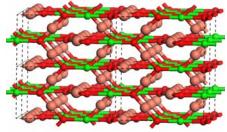
- Remove 1 Cu₂O network, but keep stoichiometry <

Band structure for Cu₂O

-Band gap increased to 1eV

Band structure for Cu2O with one network removed.

- -Disrupt Cu-Cu inter-network interaction increases the bandgap
- -Motivation for studying alloys of Cu₂O, e.g. CuAlO₂, SrCu₂O₂


M. Nolan et al, Chem Mat, 2008, 20, 5522; H. Kawazoe et al Nature 389, 939, 1997, A. Buljan, et al. Chem. Mater. **2001**, 13, 338, X. Nie et al PRB, 65, 075111, 2002)

First Principles Modelling of MCu₂O₂

M is alkaline earth, Mg, Ca, Sr, Ba

Tetragonal structure of MCu₂O₂:

Pink: Copper Red: Oxygen

Green: Alkaline Earth

-Cu₂O: Cu-Cu interactions are 3-dimensional

 MCu_2O_2 : Cu-Cu interactions are along 1-dimensional ribbons \rightarrow this increases band gap over Cu_2O (A. Kudo et al. *Appl. Phys. Lett.* 1998, 73, 222; **A. Buljan et al., P. *Chem. Mat.* 2001, 13, 338)

Why SrCu₂O₂?

First principles density functional theory (DFT, PBE exchange-correlation functional) in plane wave basis set (396 eV cut-off, 2x2x1 Monkhorst-Pack sampling grid) to optimise lattice constants of MCu₂O₂ series

- -Structure
- -Stability
- -Band gap
- -Effective hole masses

Computed lattice constants:

MCu ₂ O ₂	a [Å]	b [Å]	c[Å]
Mg	5.112	5.112	8.838
Ca	5.253	5.253	9.577
Sr	5.447	5.447	9.871
Ва	5.768	5.768	10.335

MCu₂O₂ lattice constants scale with ionic radius of alkaline earth:

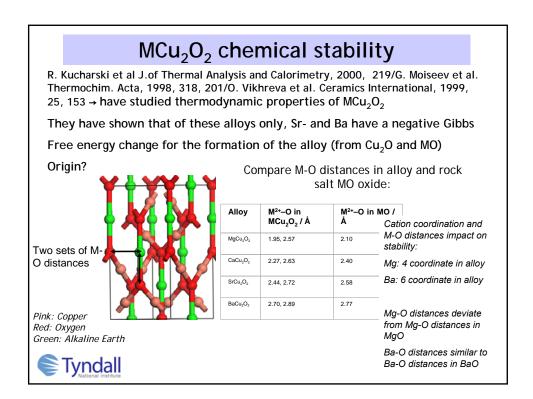
Mg < Ca < Sr < Ba

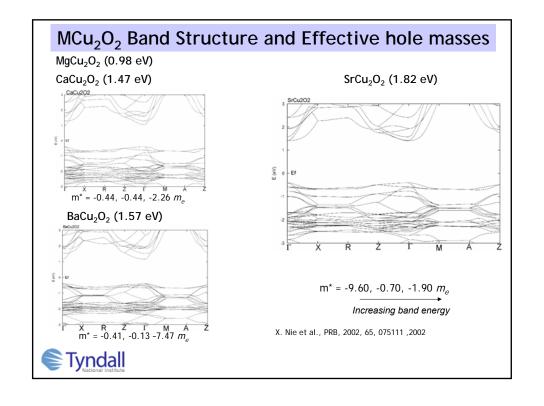
This will increase Cu-Cu distances → reduce Cu-Cu interactions → increase band gap

MCu₂O₂ chemical stability

Are the alloys stable against decomposition into constituent oxides? i.e.

$$\Delta E = E(MCu_2O_2) - [E(Cu_2O) + E(MO)]$$


- -E(MCu₂O₂)-total energy of the bulk alloy,
- -E(Cu₂O) and E(MO) total energy of bulk Cu₂O and the bulk alkaline earth oxide in the rock salt structure


Computed ΔE

MCu ₂ O ₂	ΔE [eV]
Mg	+14 eV
Ca	+0.7 eV
Sr	-0.8 eV
Ва	-1.0 eV

• $\operatorname{MgCu_2O_2}$ and $\operatorname{CaCu_2O_2}$ are unstable • $\operatorname{SrCu_2O_2}$ and $\operatorname{BaCu_2O_2}$ are stable.

Origin of p-type conductivity?

In ${\rm Cu_2O}$: Cu vacancy formation is the origin of its p-type character Acceptor defect dominate over donor defects

(*M. Nolan et al, Phys. Chem. Chem. Phys, 2006, 8, 5350; **H. Raebiger et al., Phys. Rev. B, 2007, 76, 045209)

Formation energy of Cu vacancy (3 % concentration) = 0.41 eV

Formation energy of O vacancy (3 % concentration = 3.08 eV

Origin of p-type conductivity?

In $\mathrm{Cu_2O}$: Cu vacancy formation is the origin of its p-type character

Acceptor defect dominate over donor defects

Formation energy of Cu vacancy (3 % concentration) = 0.41 eV

Formation energy of O vacancy (3 % concentration = 3.08 eV

(*M. Nolan et al, Phys. Chem. Chem. Phys, 2006, 8, 5350; **H. Raebiger et al., Phys. Rev. B, 2007, 76, 045209)

For SrCu₂O₂?

Formation energy of Cu vacancy (3 %) = 0.57 eV

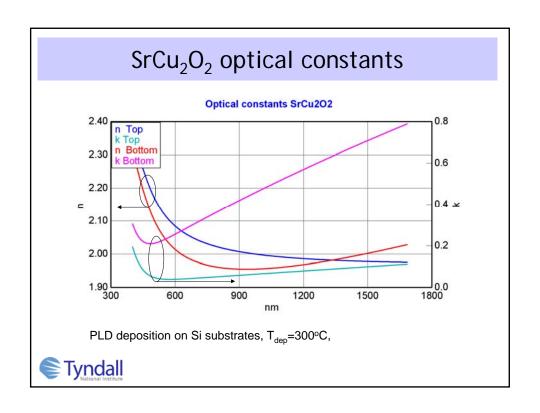
Formation energy of oxygen vacancy (3 %) = 3.86 eV

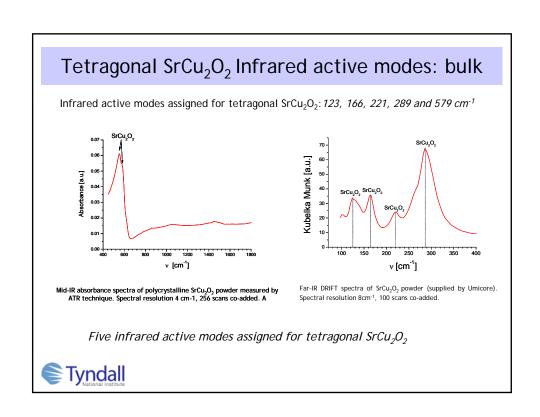
This model appears to be general for copper oxides

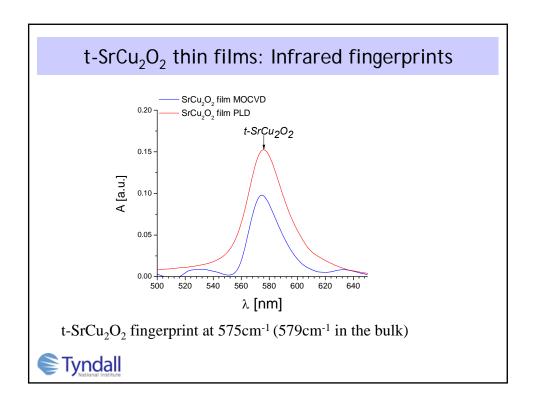
(also holds for CuAlO2, *M. Nolan, Thin Solid Films, 2008, 516, 8130)

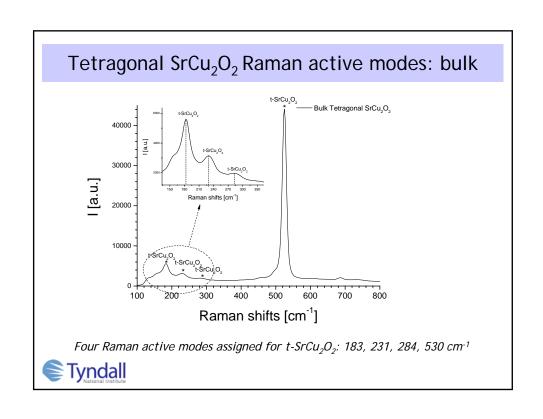
With Cu vacancy in SrCu₂O₂: Band gap ₹1.88 eV

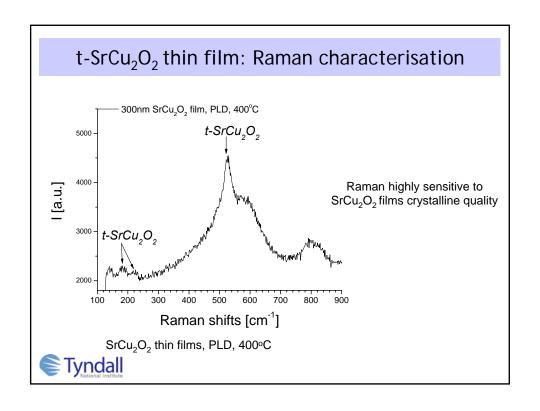
 $m^* = -6.66, -0.91, -1.48$

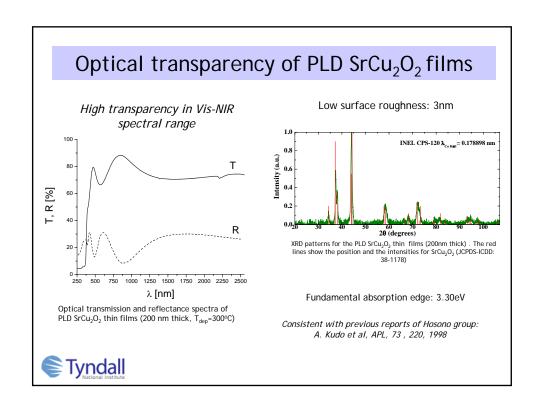





Optical properties of SrCu₂O₂


- •Scarce information available and no report on optical constants so far
- •Optical band gap reports:
 - •SrCu $_2$ O $_2$ and K doped SrCu $_2$ O $_2$ thin films by PLD: E $_g$ =3.30 eV obtained by direct inversion of T and R data*(*A. Kudo et al, APL, 73 , 220, 1998)
 - •Bulk polycrystalline K doped $SrCu_2O_2: E_g=3.00$ eV, PES and IPES spectroscopy**(**H.Ohta, J. Appl. Phys., 91, 5, 3074, 2002)
 - \bullet Bulk polycrystalline $SrCu_2O_2$: Eg= 3.35 eV , spectroscopic ellipsometry (*This work*)





Conclusion

- Modeling for insights into stability, band gap, defect chemistry
- Infrared and Raman active modes assigned for t-SrCu₂O₂
- Raman highly to disorder into SrCu₂O₂ films crystallinity (better than XRD)
- · First determination on optical constants
- Understanding the mechanism enhancing Cu vacancies generation will enable improvement in SCO electrical properties

Acknowledgments

- Michael Nolan, Simon D.Elliott¹,
- Guy Garry, Bernard Servet, Olivier Durand²,
- Ekaterina Chikoidze³,
- Guido Huyberechts⁴,
- Evie L. Papadopoulou, Elias Aperathitis⁴,
- Odette Chaix, Jean-Luc Deschanvres⁵

¹Tyndall National Institute, Ireland;

²Thales Research & Technology France, France;

³GEMaC, CNRS-Université de Versailles-Saint-Quentin, France;

⁴Umicore Group Research & Development, Belgium

⁵IESL FORTH, Crete, Greece;

⁶LMGP, CNRS-INP Grenoble, France

