

2. 2D SYSTEMS
Plane nanolayers
Hamiltonian splitting (exact):
> parallel part – Bloch-type
$$\Rightarrow$$
 2D band structure;
> perpendicular part – infinite rectangular quantum
well (IRQW) \Rightarrow QC levels
 $\Rightarrow \varepsilon^{(2)} = \varepsilon_n(k_x, k_y) + \frac{2\pi^2\hbar^2}{m_{\perp}^4 d^2} p^2, p > 0.$

$$T = 0 \text{ K} \Rightarrow \varepsilon_n(k_x, k_y) = E_y; E_{QC0} = ? \text{ By convention, } E_{QC0} = 0.$$

$$\Rightarrow \varepsilon^{(2)} = \left[\varepsilon_n(k_x, k_y) + \frac{2\pi^2\hbar^2}{m_{\perp}^2 d^2}\right] + \frac{2\pi^2\hbar^2}{m_{\perp}^2 d^2} \left(p^2 - 1\right)$$

$$\equiv \varepsilon_n^{(s)}(k_x, k_y) + \varepsilon_{p-1}.$$
QC levels located in the band gap!

$$T = 0 \text{ K} \Rightarrow \varepsilon_n(k_z) = E_v; E_{QC0} = ? \Rightarrow E_{QC0} \equiv 0.$$

$$\Rightarrow \varepsilon^{(1)} = \left[\varepsilon_n(k_z) + \frac{2\pi^2 \hbar^2}{m_t^* d^2} x_{1,0}^2\right] + \frac{2\pi^2 \hbar^2}{m_t^* d^2} \left(x_{p,l}^2 - x_{1,0}^2\right)$$

$$\equiv \varepsilon_n^{(s)}(k_z) + \varepsilon_{p-1,l}, l - \text{ orbital quantum number.}$$
QC levels located in the band gap!

Valence band = particle reservoir \Rightarrow excitation transitions start from the fundamental level \Rightarrow activation energy ratio $R_{nw} = \frac{x_{p}^{2} + 1, l'' - x_{1,0}^{2}}{x_{p}^{2} + 1, l'' - x_{1,0}^{2}}$ Thermal transition $\Leftrightarrow \Delta e = \min \max$ Electrical transition $(eU >> k_{B}T) \Leftrightarrow \Delta l = 0$; Optical transition $\Leftrightarrow \Delta l = \pm 1$.

QC transi	itions	identified	d in nc-PS:	
nc-PS	No.	E _{exp} (eV)	Transition	
PT spectral maxima	1	2.46	$(2,1) \rightarrow (3,2)$	CAN BERTHE
	2	2.16	$(0,0) \rightarrow (2,1)$	- a 1 - a 1 - a 1 - a 1 - a 1 - a 1 -
	3	1.97	$(1,1) \rightarrow (3,0)$	
	4	1.74	$(0,2) \rightarrow (2,1)$	and the second of the second second
	5	1.50	$(0,2) \rightarrow (1,3)$	
	6	1.42		$\sigma_r = E_{\exp} / E_{theor} - 1, \sigma_r \le 3 \ 70$
	7	1.33	$(0,1) \rightarrow (2,0)$	CONCONSON ON ON
	8	1.21	$(0,1) \rightarrow (1,2)$	0
PL	1	1.89	$(1, 1) \rightarrow (2, 2)$ $(1, 1) \rightarrow (3, 0)$	
TDDC	1	0.55	$(1, 1) \rightarrow (3, 0)$ $(0, 0) \rightarrow (1, 0)$	en sen se
	2	1.50	$(0,0) \rightarrow (2,0)$	
1.0	50	a const	Carlo Carl	
1 200	Date	12000	Acre 1 2 sec	A CARACTER CARACTER

QC	trar	nsitions	identifie	d in Si – SiO ₂
Si – SiO ₂	No.	E _{exp} (eV)	Transition	
PL	1 2	2,99 2,85	$(1, 2) \rightarrow (6, 1)$ $(0, 1) \rightarrow (5, 2)$	σ _r < 3 %
(<i>d</i> = 4,92 nm)	(3 4	2,71 2,59	$(1, 1) \rightarrow (6, 0)$ $(1, 1) \rightarrow (5, 2)$	
$\frac{\text{TDDC}}{(d=5.28 \text{ nm})}$	1	0,22 0,32	$(0, 1) \rightarrow (1, 1)$ $(1, 1) \rightarrow (2, 1)$	
	3	0,44	$(2,1) \rightarrow (3,1)$	
	0000			

