

|                              |                                                                                | EDUCATION                                                                                |  |  |  |  |
|------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
|                              | 1993 - 1998                                                                    | Ph. D., Faculty of Physics, "Al.I.Cuza" University, Iasi, Romania                        |  |  |  |  |
| 1                            | 1987 - 1992                                                                    | Diploma in Physics, Faculty of Physics, "Al.I.Cuza" University, Iasi, Romania            |  |  |  |  |
|                              |                                                                                | ACADEMIC AND PROFESSIONAL EXPERIENCE                                                     |  |  |  |  |
|                              | 2006 - 2007                                                                    | Postdoctoral Research Fellow, Grenoble, France                                           |  |  |  |  |
| KATEONIE<br>ECHERCHE<br>ROUE |                                                                                | Investigation of RAM devices with thermal assisted switching                             |  |  |  |  |
|                              | 2004 - 2006 Postdoctoral Research Fellow. Center for Materials for Information |                                                                                          |  |  |  |  |
|                              |                                                                                | Center, University of Alabama, Tuscaloosa, USA                                           |  |  |  |  |
|                              |                                                                                | Fabrication and characterization of CPP (Current Perpendicular to the Plane) spin valves |  |  |  |  |
|                              | 2003 - 2004                                                                    | Postdoctoral Research Fellow RWTH University 2 Physikalisches Institut A Aacher          |  |  |  |  |
|                              |                                                                                | Germany                                                                                  |  |  |  |  |
|                              |                                                                                | Role of non-magnetic defects inserted in metallic antiferromagnets on exchange bias      |  |  |  |  |
|                              | 2000 - 2003                                                                    | Postdoctoral Research Fellow, Information Storage Materials Laboratory, Toyot            |  |  |  |  |
|                              |                                                                                | Technological Institute, Nagoya, Japan                                                   |  |  |  |  |
|                              |                                                                                | Thermal stability and recording performance of hard-disk media                           |  |  |  |  |
|                              | 1992 - 2000                                                                    | Lecturer Department of Flectricity and Physical Flectronics Faculty of Physics "Alexandr |  |  |  |  |
|                              |                                                                                | Ioan Cuza" University, 11 Blvd. Carol I, 700 506 Iasi, Romania                           |  |  |  |  |
|                              |                                                                                | AWARDS                                                                                   |  |  |  |  |
|                              | 2006                                                                           | Outstanding REU student/postdoc mentor, University of Alabama (11/8/2006)                |  |  |  |  |
|                              |                                                                                | , . ,                                                                                    |  |  |  |  |
|                              |                                                                                |                                                                                          |  |  |  |  |





|                                                                                    | DRAM        | SRAM          | FLASH           | FeRAM         | MRAM                 |  |  |
|------------------------------------------------------------------------------------|-------------|---------------|-----------------|---------------|----------------------|--|--|
| Write cycle                                                                        | 50ns        | 8ns           | 200µs           | 80ns          | 30ns                 |  |  |
| Read cycle                                                                         | 50ns        | 8ns           | 60ns            | 80ns          | 30ns                 |  |  |
| Cell size (F <sup>2</sup> )                                                        | 8-12        | 50-80         | 4-11            | 4-16          | 6-20                 |  |  |
| Endurability<br>write/read                                                         | ∞/∞         | ∞/∞           | $10^{6/\infty}$ | >1012/>1012   | >10 <sup>15</sup> /∞ |  |  |
| Power<br>consumption                                                               | High        | Low           | Low             | Low           | Low                  |  |  |
| Refresh                                                                            | Yes         | No            | No              | No            | No                   |  |  |
| Retention                                                                          | No          | No            | Yes             | Partially     | Yes                  |  |  |
| Scalability<br>limits                                                              | capacitor   | 6 transistors | tunnel oxide    | capacitor     | current densit       |  |  |
| Write/erase                                                                        | Charge      | CMOS logic    | Charge          | Ferroelectric | Magnetizatio         |  |  |
|                                                                                    | capacitance |               | tunnelling      |               |                      |  |  |
| <ul> <li>Non-Volatility of FLASH</li> <li>Density competitive with DRAM</li> </ul> |             |               |                 |               |                      |  |  |
| <ul> <li>Speed competitive with SRAM</li> </ul>                                    |             |               |                 |               |                      |  |  |

|               | Wh                                                                                                                                                            | y Thermally Assisted MRAM ?                                                                                                                                                                                                                                 |  |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|               | Problems in conventional MRAM                                                                                                                                 |                                                                                                                                                                                                                                                             |  |  |  |  |  |
| œ             | <b>Selectivity</b> -> difficulty in writing a single junction<br><b>Scalability</b> -> electromigration in magnetic field lines with decreasing in-plane size |                                                                                                                                                                                                                                                             |  |  |  |  |  |
| CARE AND ON A |                                                                                                                                                               |                                                                                                                                                                                                                                                             |  |  |  |  |  |
|               | <b>Thermal stability</b> -> reduced life-time of written information                                                                                          |                                                                                                                                                                                                                                                             |  |  |  |  |  |
|               | Ne                                                                                                                                                            | ew approaches                                                                                                                                                                                                                                               |  |  |  |  |  |
|               | 1.                                                                                                                                                            | <b>Thermally assisted MRAM</b> (Spintec Patent + lab. demo)<br>- good thermal stability ensured by exchange coupling of the storage layer<br>with an Antiferromagnet;<br>- high selectivity;<br>- low power consumption during writing at high temperature. |  |  |  |  |  |
|               | 2.                                                                                                                                                            | Current induced magnetization switching<br>- linear decrease of power consumption with decreasing junction in-plane area                                                                                                                                    |  |  |  |  |  |
|               | 3.                                                                                                                                                            | Possibility to integrate 1 and 2                                                                                                                                                                                                                            |  |  |  |  |  |
|               | SPIN                                                                                                                                                          | ITEC - URA 2512 6                                                                                                                                                                                                                                           |  |  |  |  |  |































|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conclusion                                                                                                                                                                                                         |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ✓ Writing temperature increases with decreasing pulse width $\delta$ as a consequence of thermal relaxation in the Antiferromagnetic storage layer and approaches the Neel temperature in the limit $\delta$ -> 0. |  |  |  |
| Contraction of the second seco | Exemple: writing with 2 ns pulses imply heating at about 300 °C with possible negative effects on the integrity of tunnel barrier and storage layer antiferromagnet.                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Solution: decrease the writing temperature by using antiferromagnets of lower Nèel temperature than IrMn (T $_{\rm N}\approx350~{\rm °C}$ ) for pinning the storage layer.                                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPINTEC - URA 2512 22                                                                                                                                                                                              |  |  |  |