Tehnici de vizualizare pentru cuantificarea curgerii fluidelor de la micro la macro scari

(Image Techniques for Quantification of Micro- and Macro-Scale Fluid Flows)

Marian Muste

IIHR- Hydroscience & Engineering The University of Iowa, U.S.A.

Bucuresti, 2008

Synopsis

Imaging: oldest approach for observing flows

- Originally for *qualitative* measurements (Leonardo da Vinci)
- Currently enable *quantitative* measurements

$\rightarrow \rightarrow \rightarrow$

- Quantitative Imaging Techniques (QIT)
 - Well-established foundations through the development of Particle Image Velocimetry (PIV), Particle Tracking Velocimetry (PTV) and Laser Induced Fluorescence (LIF)
 - increasingly popular in Hydraulic Engineering (HE) under the name Large-Scale Particle Image Velocimetry (LSPIV)
 - rapidly growing at the pace of digital revolution
 - can uniquely support observations/measurements to understanding processes and their interaction from micro- to macro-scale flows

Why QIT?

General aspects:

- user-friendly: images as raw information
- fully digital → on-line data processing, remote operation
- rapid & continuous improvement of spatial & temporal resolutions

Specific (hydrodynamic) aspects:

- non-intrusive measurements (close range remote sensing)
- instantaneous, whole (plane, multipoint) flow velocities most advanced measurement capabilities
- multiple-task technique: velocities, velocity-derived, and scalar measurements

QIT Principles

Velocity calculation:

Based on the simplest velocity definition

V = D/t

Main technique task: determine displacement (*D*) of tagged flow regions in a time-sequenced image series (*t* apart)

Scalar field measurements:

Based on image color or intensity (light wavelength or frequency)

Application I: Micro-scale Flows

Particle Tracking and Particle Image Velocimetry

- Commercial hardware components: high-speed, high-resolution imaging devices, pulsed lasers, fiber optics, commercial dataacquisition software
- In house developed software for image processing (PTV and PIV)
- Experiments conducted in Japan in 2001 in open channel flows with same size suspended sediment (only) and three different concentrations :
 - NS natural sand, $d_{50} = 0.2 \text{ mm}$
 - NBS neutrally-buoyant sand, $d_{50} = 0.2 \text{ mm}$

Collaborators: Ichiro Fujita, Kwonkyu Yu, Robert Ettema

Selected References:

- Muste, M., K. Yu, I. Fujita, Ettema, R. (2008). "Two-phase Flow Insights into Open-channel Flows with Suspended Particles of Different Densities," Env. Fluid Mechanics (in print)
- Muste, M., Yu, Fujital I., Ettema, R. (2005). "Traditional versus Two-phase Perspective in Turbulent Channel Flows with Suspended Sediment," Wter Resources Research 41(10)

NS: average streamwise sediment velocity slower up to 5 % than water (conventional time-averaging)

NS: Using McLaughlin & Tiederman's (1973) algorithm it can be proved that the vertical sediment flux is zero

> Ϋ́ 0.4

> > 0.2

0.0

-0.05

0.05

0.05

.

 $V_{m/s}$

0.1

0.1

NBS: Conventional temporal averaging on the vertical velocity samples

- There is no velocity lag in an instantaneous interaction (violation of the non-slip condition around individual grains - Kiger & Pan; 2002)
- What is the significance of a velocity difference between water and particles (lag) in the NS average statistics?

• Turbulence in OCF comprises coherent structures generated near the bed with sweeps, $u'_w > 0$, $v'_w < 0$ (quadrant four events) and ejections, $u'_w < 0$ (quadrant second events) being the most energetic.

- Particle-fluid interaction is taking place at two levels:
 - Micro = eddies comparable with particle size (turbulence modification)
 - Macro = larger coherent structures (deposition-entrainment)
- Direct observations of the macro particle behavior reveals that heavy sediment has not a symmetrical trajectory in its suspension-deposition cycle (Abbott & Francis, 1977; Summer & Deigaard; 1981)

NS Mode 1 (y/h < 0.2): Magnitude of the total velocity for particle larger than water and oriented upward

NS

Mode 3 (y/h > 0.6): Magnitude of the total velocities for particles and water close and oriented horizontal

NS

Mode 5 (y/h < 0.2): Magnitude of the total velocity for particles and water close and oriented downward

 Conventional parameters used to characterize turbulence changes for water

$$D_s/\lambda;$$
 $St = \frac{\tau_p}{\tau_f} = \frac{D_s^2 \rho_s}{18 \nu \rho_w} \sqrt{\frac{\varepsilon}{15\nu}};$

$$\operatorname{Re}_{p}=D_{s}|U_{L}|/\nu$$

Not accounted: sediment concentration

NS

- Streamwise turbulence intensities = intricate interdependencies
- Water turbulence intensities increased near bed, unchanged in the outer layer
- Particle turbulence intensities larger than fluid (especially vertical)

NBS

- Water turbulence intensities increased near bed
- Water turbulence intensities increased in the outer layer (more particles in this area)
- Particle turbulence intensities larger than fluid, excepting near the bed

0.8

0.8

1.0

10

Multiple particle-fluid interaction defines the sediment diffusion coefficient

Conclusion I

- Up to 5% average streamwise velocity lag for NS → up to 40% reduction in suspended sediment transport (Aziz, 1996). No lag for NBS.
- Average vertical velocity (inverse) lag for NS. No lag for NBS.
- Smaller *K* for both NS and NBS for $C_{vol} > 10^{-4}$
- Average vertical particle velocity different from the settling velocity
- Turbulence intensities for water modified in the presence of sediment and different from those measured on the sediment particles
- Two-phase measurements promise important clarifications on the interaction between turbulence coherent structures and individual or groups of sediment particles and for formulation of improved sediment transport predictive relationships

Application II: Macro-Scale Flows

Large-Scale Particle-Image Velocimetry (LSPIV)

- an extension of the conventional PIV
- mostly applied for velocity measurement at the free surface of a moving water body
- Pioneered at IIHR since 1994
- identified by USGS Hydro21 committee as one of the candidate technology for remote discharge measurement in 1999

Collaborators:

I. Fujita, A. Kruger, A. Bradley, W. Krajewski, K. Yu, G. Schone, D. Creutin, S-C Schul, Y. Kim, Z. Xiong, X. Zhongwei, H-C Ho

LSPIV Components

- 0
- Illumination natural or artificial light
- Seeding

- small & light for accurate flow tracing
- large enough for efficient detection
- various particle sizes or image brightness distributions (patterns)
- Recording

- video systems for most HE applications
- Image Processing related to seeding concentration 0
 - 2-D cross-correlation (most often used)

LSPIV - Approaches

LSPIV - Image Orto-rectification

- LSPIV images : usually oblique angle
 - Introduce lens and geometrical distortion of the actual configuration of the flow
 - Remove both types of distortion using a geometrical transformation to the recorded images
- Conventional transformation
 - Surveying physical coordinates of ground reference points
- Transformation with non-intrusive instrumentation
 - Range finder, laser total station, GPS
 - Camera model calibration method
 - Automated transformation method

LSPIV - Image Velocimetry

- Estimate the <u>displacement of marked regions of the flow</u> by observing the images of the markers on two or a series of images
- The displacement measurements of markers between two successive images are calculated on <u>small regions (interrogation areas)</u> in the images using a statistical approach
- The velocity vector of each interrogation area is calculated by dividing the displacements by the time difference of the two successive images

LSPIV typical results

a) Video frame	C. A. S. S. C. C.
b) Instantaneous vector field	
c) Mean vector field	
d) Streamlines obtained from the mean vector field	
e) Iso-velocity contours obtained from the mean vector field	
f) Iso-vorticity contours obtained from the mean vector field	

LSPIV - Typical results

Flow Discharge

Stream velocity

River discharge bridge and sill **Measurements** (LSPIV measurements in conjunction Power with bathymetry information) IIHR plant building **Iowa River** USGS gauging station - Flow imaged area: ~ 3,500 m² - Velocity range: 0 – 3 m/s - Seeding: natural foam Video camera -comparison with USGS measured Ground Reference discharges shows good agreement for Points 10 individual measurements conducted 20 m over three weeks

River discharge measurements:

(calibration results and real-time measurements (http://far.iihr.uiowa.edu/PIV _WebPage_Index.htm)

Real-time LSPIV unit for investigating stream processes

Real-time LSPIV – instrument inter-comparison

	USGS	StreamPro ADCP	MLSPIV
Discharge (m ³ /s)	5.2	4.9	5.0
Error (%)	Reference	-5.5	-3.5

- Digital mapping using LSPIV
- Controlled Surface Wave Image Velocimetry

Digital Mapping: developed to reduce the time & effort required to to obtain consistent, reliable information on bridge waterways

Digital Mapping: System configuration and data acquisition

Digital Mapping: Outcomes = orto-rectified images of the bridge vicinity + LSPIV flow surface measurement

Digital Mapping: Tool for long-term tracking of the bridge waterways

Controlled Surface Wave Image Velocimetry (CSWIV)

g)

CSWIV

-controlled disturbance produced at the free surface creates a moving pattern (a,b,c,d)

- image velocimetry applied to the moving pattern provides vector field (c,f)

-subtraction of the velocity field upstream-downstream the disturbance provides the underlying flow velocity (g)

e)

Still water

Velocity estimation

h)

c)

CSWIV

Adequate for shallow, very low velocity flows (wetlands, runoff)

Conclusion II

- Proof of concepts and detailed tests reveal the maturity and feasibility of LSPIV for investigation of laboratory and field flows under a wide variety of conditions
- LSPIV can benefit measurements in special situations:
 - Floods
 - Streams where boats cannot be deployed (e.g., shallow)
 - Ungaged basins (using the mobile LSPIV unit)
 - Very low velocity flows (e.g., wetlands)
 - Ecohabitat restoration (bank stability & erosion)
 - Stream-hydraulic structure interaction (bridge scour)
 - Estimation of ice and debris transport rates

References (I)

- 1. Kim, Y., Muste, M., Hauet, A., Krajewski, W., Kruger, A., Bradley, A. (submitted). "Real-Time Stream Monitoring Using Mobile Large-Scale Particle Image Velocimetry," *Water Resources Research*
- 2. Hauet, A., Muste, M., and Bradley, A. (submitted). "Large-Scale Particle Image Velocimetry Using Adaptive Processing of Distorted Images," *Experiments in Fluids*
- 3. Hauet, A., Kruger, A., Krajewski, W.F., Bradley, A., Muste, M., Creutin, J-D., Wilson, M. (submitted). "Real-Time Estimation of Discharges of the Iowa River Using an Image-Based Method", Submitted to *Journal of Hydrology*
- 4. Kim, Y., Muste, M., Weber, L., Yang, J. (2007). "Two Non-Instrusive Techniques for Measuring Stream Discharges," EWRI-IAHR Hydraulics Measurement & Experimental Methods Conference, Lake Placid, NY
- 5. Kim, Y., Muste, M., Hauet, A., Bradley, Weber, L. (2007). "Uncertainty Analysis for LSPIV In-situ Velocity Measurements," *Proceedings* 32nd IAHR Congress, Venice, Italy
- 6. Kim, Y., Muste, M, Krajewski, W., Kruger, A., Bradley, A and Weber, L. (2007). "Image Velocimetry for Discharge Measurements in Streams," *Proceedings* 32nd IAHR Congress, Venice, Italy
- 7. Hauet, A., Muste, M., Creutin, J.D., Belleudy, P. and Krajewski, W. (2006). "Discharge Measurement Using Large-Scale PIV – Recent Results and Perspectives," Proceedings International Conference on Fluvial Hydraulics Riverflow 2006, Lisbon, Portugal.
- 8. Kim, Y., Muste, M., Kruger, M., Krajewski, W., Bradley, A. and Weber, L. (2005). "Real-Time Stream Monitoring Using Mobile Large-Scale Particle Image Velocimetry," *Proceedings* XXXI IAHR Congress, Seoul, Korea.
- 9. Hauet, A., Kruger, A., Krajewski, W.F., Bradley, A., Muste, M., Creutin, J-D., Wilson, M. (2005). "Real-Time Estimation of Discharges of the Iowa River Using an Image-Based Method", Submitted to *Journal of Hydrology*.

References (II)

- 10. Muste, M., Schone, J. and Creutin, J-D. "Measurement of Free-Surface Flow Velocity Using Controlled Surface Waves," *Flow Measurement and Instrumentation*, 16(1), pp. 47-55.
- 11. Muste, M., Z. Xiong, J., Schöne, Z. Li (2004). "Flow Diagnostic in Hydraulic Modeling Using Image Velocimetry," *J. Hydr. Engrg*, 130(3), pp. 175-185.
- 12. Meselhe, E., Peeva, T., Muste, M. (2004). "Large-Scale Particle Image Velocimetry for Low Velocity and Shallow Depth Flows," *J. Hydr. Engrg.*, 130(9), pp. 937-940.
- Creutin, J.D., Muste, M., Bradley, A.A., Kim, S.C. and Kruger, A. (2003). "River Gauging Using PIV Technique: Proof of Concept Experiment on the Iowa River, Accepted by *J. Hydrol.*, 277(3-4), pp. 182 – 194.
- 14. Creutin, J.D., Muste, M. and Li, Z. (2002). "Traceless Quantitative Imaging Alternatives for Measurements in Natural Streams," *Proceedings* Hydraulic Measurements & Experimental Methods, ASCE-IAHR Joint Conference, Estes Park, CO (CD-ROM).
- 15. Bradley, A.A., Kruger, A., Meselhe, E, and Muste, M. (2002). "Flow Measurement in Streams Using Video Imagery," *Water Resources Research*, 38(12), p. 1315
- 16. Jasek, M., Muste, M., and Ettema, R., (2001), "Estimation of Yukon River Discharge During an Ice Jam," Canadian Journal of Civil Engineering, 28, pp. 856 864.
- 17. Muste, M., Xiong, Z., Bradley, A., and Kruger, A. (2000). "Large-Scale Particle Image Velocimetry a Reliable Tool for Physical Modeling," *Proceedings* of ASCE 2000 Joint Conference on Water Resources Engineering and Water Resources Planning & Management, Minneapolis, MN (CD-ROM).
- 18. Kruger, A. Bradley, A., Muste, M., and Fujita, I. (2000). "Real-Time Measurements of Free-Surface Velocity Using Imaging Techniques," Proceedings of the 4th International Conference on Hydroinformatics, Iowa City, IA (CD-ROM)

References (III)

- 19. Muste, M., Ettema, R., and Fujita, I. (2000). "Image-Based Technique for Monitoring Ice Motion in Laboratory and Field Conditions," *Proceedings* International Workshop on River Environments Considering Hydraulic and Hydrologic Phenomena in Snowy and Cold Regions, Quebec City, Canada, pp. 1 – 6.
- 20. Muste, M., Xiong, Z., and Kruger, A. (1999). "Error Estimation in PIV Applied to Large-Scale Flows," 3rd International Workshop on Particle Image Velocimetry, Santa Barbara, CA, pp. 619-624.
- 21. Meselhe, E.,Bradley, A, Kruger, A., and Muste, M. (1999). "Low Flow Measurement in Streams Using Video Imagery," *Proceedings* of ASCE Conference, Seattle, WA (CD-ROM).
- 22. M. Jasek, M. Muste, R. Ettema, and A. Kruger (1999). "LSPIV and Numerical Estimation of Yukon River Discharge During an Ice Jam Near Dawson," *Proceedings* 10th Workshop on River Ice, Winnipeg, MB, Canada, pp. 223 - 235.
- 23. Fujita, I., Muste, M. and Kruger, A. (1998). "Large-Scale Particle Image Velocimetry for Flow Analysis in Hydraulic Applications," *J. Hydr. Res.*, 36(3), pp. 397-414.
- 24. Meselhe, E.A., Bradley, A., Kruger, A., and Muste, M. (1998). "PIV and Numerical Modeling for Flow Estimation and Analysis in Coastal Marshes," Recent Research in Coastal Louisiana: Natural System Function and Response to Human Influences, Lafayette, LA.
- 25. Ettema, R., Fujita, I., Muste, M., Kruger, A. (1997). "Particle-Image Velocimetry for Whole-Field Measurement of Ice Velocities," *Cold Regions Science and Technology Journal*, 26(2), pp. 97-112.
- 26. Ettema, R., Fujita, I., Muste, M., and Kruger, A. (1997). "Particle-Image Velocimetry for Ice-Field Velocities," *Proceedings* XXVII IAHR Congress, Theme B, Vol.1, San Francisco, California, pp. 137-142.

