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Planul Prezentarii

• Introducere
– Background si Necesitatea Cercetarii

• Exemple de Curgeri Nestationare
• Modele pentru Curgeri Nestationare

– Time Linearization
– Harmonic Balance 
– Reduced-Order Models
– Volterra Series 

• Proper Orthogonal Decomposition
– Metode de Accelerare

• Concluzii
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Background
• Challenges

– Turbomachinery is the test bed for unsteady aerodynamics
– Governing equations for unsteady aerodynamics are sets 

of large PDEs that change character depending on flow 
conditions

– While ODEs solvers are widely available, this is not the 
case for PDEs; PDE solvers are few and cover a narrow 
range of applications

– Numerical solutions of PDEs boil down to solving a 
different set of equations after discretization

– There is no “faithful solution” to PDEs
• Implication

– Computational time is extremely large for high-fidelity 
models
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Background
• Need for Unsteady Aerodynamics

– Performance
‣ Compressor and Turbine Airfoil Indexing
‣ Axial Thrust Prediction in Centrifugal Compressors

– Aero-Mechanics 
‣ Flow Control for Suppressing Rotating Stall
‣ Fluid Instabilities in Honeycomb Stator Seals
‣ Continuation/POD method for Turbomachinery Aeroelastic 

Analysis 
– Novel Cycles

‣ In-Situ Reheat and Turbine-Combustors
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Compressor and Turbine Airfoil Indexing

• New design expected efficiency increase 0.3-0.5 points
• Old design with airfoil indexing - up to 2 points

• Multi-row interaction
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PaRSI
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PaRSI
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In-Situ Reheat and Turbine-Combustors
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Axial Thrust Prediction in Centrifugal 
Compressors

• Prior one could not even predict the sign of axial thrust!
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Axial Thrust Prediction
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UNS3D
Serpentine Jet Engine Inlet Duct
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UNS3D Fluent



Flow Control for Suppressing Rotating Stall
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propagation

Stall cell

Direction of stall cell



Flow Control for Suppressing Rotating Stall
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Approach
Key Ingredients
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Air Supply
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Fluid Instabilities in Hole Pattern and 
Honeycomb Stator Seals
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Animation of Bounded Flow

Density Contours
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Flow Analysis Tools

• Parallel Rotor-Stator Interaction (PaRSI)
• Unsteady Unstructured 3D (UNS3D)
• Grid Generator (GG)
• Combustion and Rotor-Stator Interaction (CoRSI)
• PaRSI/POD
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Unsteady Aerodynamic Models

• Time linearization
• Harmonic balance (HB)
• Proper orthogonal decomposition (POD)
• Volterra series (VS) and transfer (or describing) functions
• Only HB, POD and VS capture nonlinearities
• HB requires flow be periodic in time
• VS limited by convergence issues and need high-order kernels
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Time linearization

• Small (linear) dynamic perturbation about a 
(nonlinear) mean flow
– Time domain
– Frequency domain

• Pros: 
– Computationally very inexpensive
– Good for linear stability of AE system

• Cons:
– Cannot capture nonlinearities
– Cannot determine LCO amplitude
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Harmonic Balance

• Assumes flow is periodic & expands in terms of 
a Fourier series in time

• Retains physical dimensions of a full-order 
model 

• Transforms from time domain to frequency 
domain

• Pros:
– Number of harmonic frequencies << time steps

• Cons:
– Flow must be periodic in time
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Reduced-Order Models

• Determine dominant spatial modes & use these modes 
to represent the flow

• Proper Orthogonal Decomposition offers best 
approximation for any number of modes
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Volterra Series & Transfer Functions

• Volterra series in time domain
• Transfer functions (or describing functions for 

nonlinear case) in frequency domain
• Pros:

– Generate small computational models from large CFD 
data sets

• Cons:
– Approach more developed for dynamically linear case



• Extracts:
– time-independent orthonormal basis functions Φk(x)
– time-dependent orthonormal amplitude coefficients ak(ti) 

• such that the reconstruction

• is optimal in the sense that the average least square truncation error 

• is a minimum for any given number m≤M of basis functions over all possible sets 
of orthogonal functions
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POD Method

Optimal property (1) reduces to

• {Φk} are eigenfunctions of integral equation (2), whose kernel 
is the averaged autocorrelation function

• For a finite-dimensional case, (3) replaced by tensor product 
matrix

•
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POD Method

Features
• Provides optimal basis for modal decomposition of a data 

set
• Extracts key spatial features from physical systems with 

spatial and temporal characteristics
• Reduces a large set of governing PDEs to a much smaller 

of ODEs
Steps
• Database generation
• Modal decomposition
• Galerkin projection
• Time coefficients computation
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POD Method
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∂

∂t
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∂

∂t
(εmρm$vm) +∇ · (εmρm$vm$vm) = −εm∇pg +∇ · Sm + Fgs($vs − $vg) + εmρm$g

εmρmCpm

(
∂Tm

∂t
+ $vm∇Tm

)
= −∇$qm − γm(Tm − T!)−∆Hrm + γRm(T 4

Rm − T 4
m)

Full-order model governing equations



POD Method
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Proper Orthogonal Decomposition

• Acceleration methods
– Database splitting
– Quasi-symmetrical matrix solver
– Time step adjustment strategy
– Updating matrix of time coefficients strategy
– Sampling strategy
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Quasi-symmetry of A Matrix

A matrix for v-velocity 

Ã =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

196.4486 63.3060 6.0469 0.5038 −21.3047 11.9071 2.3488 −6.8064
63.3060 903.4807 −44.1690 6.3410 14.0286 −7.4939 6.1636 19.8724
6.0459 −44.1687 243.2099 −20.7951 −164.8536 68.0529 19.3275 −42.8377
0.5039 6.3411 −20.7953 930.9194 31.0348 20.0166 14.3861 15.2768

−21.3042 14.0288 −164.8535 31.0347 890.8742 32.1664 42.8224 −23.8698
11.9068 −7.4940 68.0527 20.0167 32.1663 904.3555 −10.8230 26.7999
2.3477 6.1634 19.3267 14.3861 42.8222 −10.8228 872.6460 92.5161
−6.8042 19.8722 −42.8362 15.2768 −23.8695 26.7996 92.5161 763.9839

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ãεs
"k = {ϕ"}T [A]{ϕk}−

NB∑

nb=1

{ϕ"}T [Anb]{ϕknb}, ", k = 1, . . . ,m
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Algorithm for solving 
quasi-symmetrical matrices

Ax = b

(As + An)x = b

Asx
(1)
s = b

x = x(1)
s + x(1)

n

(As + An)x(i)
n = −Anx(i)

s

x(i)
n = x(i+1)

s + x(i+1)
n

x = x(1)
s + x(2)

s + · · · + x(m)
s + x(m)

n
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Algorithm for solving 
quasi-symmetrical matrices

1. For given A, find An and As

2. For given As, find L where LLT=As

3. For given L and b, find xs
(1)

4. For given xs
(1) and An find b(1)

5. Repeat steps 3 and 4 until xs
(m) is smaller than a given 

error



Splitting Matrix A

As =





a11 a21 . . . am1

a21 a22 . . . am2
...

...
...

am1 am2 . . . amm





An =





0 a12 − a21 . . . a1m − am1

0 0 . . . a2m − am2
...

...
...

0 0 . . . 0




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As =
1
2
(A + AT )

An =
1
2
(A−AT )

Split 1 Split 2

Split 1 Split 2
x(1)

s x(2)
s x(3)

s x(1)
s x(2)

s x(3)
s

1 0.2205E+00 -0.5529E-06 0.7659E-12 0.2205E+00 -0.3159E-06 -0.3772E-11
2 -0.1401E+00 0.3505E-07 -0.1631E-12 -0.1401E+00 0.4948E-07 0.2289E-12
3 0.3053E-01 -0.2586E-06 -0.3920E-12 0.3053E-01 0.3431E-06 -0.2669E-11
4 -0.4188E-01 -0.1645E-07 0.8489E-14 -0.4188E-01 0.1406E-07 0.5404E-14
5 0.3669E-01 -0.8025E-07 -0.6626E-13 0.3669E-01 -0.2367E-07 -0.6342E-12
6 -0.4223E-01 0.4975E-07 0.3221E-13 -0.4223E-01 0.4024E-07 0.3478E-12
7 0.5685E-01 0.1344E-07 0.1147E-13 0.5685E-01 0.1726E-06 0.6542E-13
8 -0.1916E-01 -0.2588E-07 -0.1567E-13 -0.1916E-01 -0.4003E-06 -0.9619E-13



Degree of Non-symmetry
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||A||F =
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i=1

n∑

j=1

|aij |2
Frobenius (Hilbert-Schmidt) Norm



Effect of 
Degree of Non-symmetry

Number of iterations
Eulerian norm of difference between solutions 
of the LU decomposition and the present 
method
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POD for Turbomachinery Aeroelastic Analysis
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Full-Order Model Reduced-Order Model, POD 40 modes

A reduced-order model is not necessarily a low-fidelity solution!



POD for Turbomachinery Aeroelastic Analysis

36

Full-Order Model Reduced-Order Model, POD 40 modes

A reduced-order model is not necessarily a low-fidelity solution!



POD for Turbomachinery Aeroelastic Analysis
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Full-Order Model Reduced-Order Model, POD 40 modes

A reduced-order model is not necessarily a low-fidelity solution!



ODEx - POD for Two-Phase Flows
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ODEx - POD for Two-Phase Flows
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Current Related Research Projects
• DOE

‣ A Reduced-Order Model of Transport Phenomena for Power 
Plant Simulation

• AFOSR
‣ Rotating Stall Suppression Using Oscillatory Blowing 

Actuation on Blades (co-PI: O. Rediniotis)
• AFOSR

‣ A Novel Method for the Prediction of Nonlinear Aeroelastic 
Responses (co-PI: T. Strganac)

• Turbomachinery Research Consortium
‣ Prediction of Fluid Instabilities in Hole Pattern and 

Honeycomb Stator Seals
• AFRL/GUIDE Consortium

‣ Turbomachinery Aeroelastic Analysis Using a Continuation/
Proper Orthogonal Decomposition Method
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Current Research Team

• Thomas Brenner - Ph.D. (G8)
• David Liliedahl - Ph.D. (G8)
• Forrest Carpenter - Ph.D. (G8)
• Greg Worley - M.S. (G7)  
• Will Carter - Ph.D. (G7)
• Raymond Fontenot - M.S. & Ph.D. (G7)
• Robert Brown - UG (G4)
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Questions?
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Parallel Rotor-Stator Interaction (PaRSI)

• Reynolds-averaged Navier-Stokes quasi-3D solver
• Features

– Finite-difference, structured (multiblock), implicit, parallel, 
unsteady, with rotating, pitching and plunging blades

• 22,300 code lines
• Sponsor: Westinghouse Power Generation 
• Impact

– airfoil clocking increased efficiency by up to 2 points
– clocking is now incorporated in turbomachinery design 

process

42



Unsteady Unstructured 3D (UNS3D)
• General Reynolds-averaged Navier-Stokes 3D solver
• Features: Control volume, unstructured, explicit, 

unsteady, multigrid, parallel
• 11,400 code lines
• Sponsors (2000-present): Turbomachinery Research 

Consortium (for internal flows), AFOSR (for external 
flows and aeroelastic applications) 

• Impact
– internal flows: predicted axial loads on centrifugal 

compressors to prevent bearing failure; fluid instabilities in 
honeycomb stator seals

– external flows: predict aerodynamic nonlinearities (shock 
and flow separation) needed to understand nonlinear fluid-
structure interactions
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Grid Generator (GG)
• Hybrid (structured/unstructured) 3D grid generator
• Purpose

– allow very large deformation w/out regriding
– same topology from hub to tip for extreme turning
– facilitate parallel processing

• Features
– O-grid structured (Poisson solver or conformal map-ping) 

for viscous region
– deforming triangular prisms
– topologically identical layers for parallel processing

• 8281 code lines
• Sponsors

– Turbomachinery Research Consortium & AFOSR (2000-
present)
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Grid Generator (GG)
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Combustion and Rotor-Stator Interaction
(CoRSI)

• Combustion in rotating machinery, based on RANS
• Features

– Finite difference, unsteady, implicit
• 15,600 code lines
• Sponsors (2001-present)

– Westinghouse Science and Technology Center
– U. S. Department of Energy
– Siemens (Germany)

• Impact
– Supports development of turbine-combustors, a “nascent 

and compelling” propulsion thrust area (National Research 
Council’s Committee on Air Force and DoD Aerospace 
Propulsion Needs)
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Nonlinear Aeroelastic Interaction

Motivation
• Evidence of beneficial responses attributed to nonlinearities

‣ example: bird flight
• Evidence of adverse responses attributed to nonlinearities (that 

affect air vehicles)
‣ examples:

– Limit Cycle Oscillation (LCO): F-5, F-15 STOL, F-16, 
F-111, F/A-18

– Residual Pitch Oscillation (RPO): B-2

Physical Sources of Nonlinearities
•  Structural

‣ Geometric structural nonlinearities (ex.: panel flutter)
‣ Control surface freeplay
‣ Internal structural damping
‣ Internal and auto-parametric resonances

•  Aerodynamic
‣ Flow separation (& intermittent TE separation)
‣ Shock motion (& interaction with boundary layer)
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A tightly coupled CFD-CSM aeroelastic solver models 
nonlinear structural and aerodynamic interaction:
•  RANS-based Aerodynamic Model
•  Nonlinear Structural Model
•  Tightly Coupled Solution
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Remarkable in-plane responses arise 
from nonlinear coupling with
out-of-plane bending and torsion
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Nonlinear Aeroelastic Interaction 
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Aeroelastic Model
• Aerodynamics model

– Reynolds-averaged Navier-Stokes equations
– Shear stress transport (SST) turbulence model

• Structural model
– Nonlinear beam (T. Strganac)

‣ Nonlinear equations of motion (with quadratic and cubic 
nonlinearities)

• In-plane bending 
• Out-of-plane bending
• Torsion

– FEM
‣ plate elements (Michael McFarland, UIUC)
‣ brick elements (John Whitcomb, TAMU)

• Tightly coupled aerodynamics and structural models
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Mesh Generation

• Requirements
– Allow large wing deformations without remeshing
– Allow a good control of grid size in boundary layer
– Facilitate parallel computation

• Implementation
– Layers of topologically identical elements in spanwise 

direction
– Structured O-grid around the wing surface
– Unstructured grid outside of O-grid mesh
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Mesh Generation
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Mesh Generation
O-Grids

Poisson solver Conformal mapping



Mesh Deformation

• Deformations
– elastic axis displacement
– wing rotation
– chord-wise bending

• Techniques
– Spring analogy
– Conformal mapping
– Boundary orthogonal layers
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Mesh Generation
Chord-wise Deformation



GG - Grid Quality

55



GG - Grid Quality
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Flow Solver

• Finite volume method
• Dual-mesh cell-vertex method
• Edge-based method
• Upwind method for convective flux
• Least-squares with QR (or Green-Gauss) for gradients
• Piecewise linear reconstruction 
• Multi-stage explicit time integration with local time 

stepping and residual smoothing
• Deforming cell capabilities (using GCL)
• Multigrid
• Parallel computation
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F-5 Wing &
Transport Jet Wing



Validation

• Heavy Goland wing at Mach=0.09 (AIAA-2006-2073)
• Heavy Goland wing at Mach=0.7  (AIAA-2006-2073)
• Original Goland wing, stability boundary (IFASD 2007)
• F-5 wing (AIAA-2007-330)
• Nonlinear Aeroelastic Test Apparatus (NATA) wing
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linear  plunge



UNS3D - Examples
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UNS3D - Examples
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UNS3D - Examples
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