Modelarea cu Ordin Redus a Curgerilor in Turbomasini

Paul Cizmas Department of Aerospace Engineering Texas A&M

Planul Prezentarii

- Introducere
 - Background si Necesitatea Cercetarii
- Exemple de Curgeri Nestationare
- Modele pentru Curgeri Nestationare
 - Time Linearization
 - Harmonic Balance
 - Reduced-Order Models
 - Volterra Series
- Proper Orthogonal Decomposition
 - Metode de Accelerare
- Concluzii

Background

- Challenges
 - Turbomachinery is the test bed for unsteady aerodynamics
 - Governing equations for unsteady aerodynamics are sets of large PDEs that change character depending on flow conditions
 - While ODEs solvers are widely available, this is not the case for PDEs; PDE solvers are few and cover a narrow range of applications
 - Numerical solutions of PDEs boil down to solving a different set of equations after discretization
 - There is no "faithful solution" to PDEs
- Implication
 - Computational time is extremely large for high-fidelity models

Background

- Need for Unsteady Aerodynamics
 - Performance
 - Compressor and Turbine Airfoil Indexing
 - Axial Thrust Prediction in Centrifugal Compressors
 - Aero-Mechanics
 - Flow Control for Suppressing Rotating Stall
 - Fluid Instabilities in Honeycomb Stator Seals
 - Continuation/POD method for Turbomachinery Aeroelastic Analysis
 - Novel Cycles
 - In-Situ Reheat and Turbine-Combustors

Compressor and Turbine Airfoil Indexing

- New design expected efficiency increase 0.3-0.5 points
- Old design with airfoil indexing up to 2 points

• Multi-row interaction

potential flow interaction	shock-boundary layer interaction			
wake interaction	hot streak interaction			
vortex shedding	flutter			

PaRSI

PaRSI

In-Situ Reheat and Turbine-Combustors

Axial Thrust Prediction in Centrifugal Compressors

• Prior one could not even predict the sign of axial thrust!

Axial Thrust Prediction

UNS3D Serpentine Jet Engine Inlet Duct

	Experiment		UNS3D	Fluent Error	UNS3D Error	
	[m]	[m]	[m]	[%]	[%]	
First bend	0.3302	0.403	0.339	22.05	2.66	
Second bend	0.602	0.591	0.601	-1.83	-0.17	

UNS3D

Fluent

Flow Control for Suppressing Rotating Stall

Flow Control for Suppressing Rotating Stall

APPROACH Key Ingredients

Super-blade

Pulsing modulator

Fluid Instabilities in Hole Pattern and Honeycomb Stator Seals

Density contour plots: unbounded (left), channel flow (right)

Flow Analysis Tools

- Parallel Rotor-Stator Interaction (PaRSI)
- Unsteady Unstructured 3D (UNS3D)
- Grid Generator (GG)
- Combustion and Rotor-Stator Interaction (CoRSI)
- PaRSI/POD

Unsteady Aerodynamic Models

- Time linearization
- Harmonic balance (HB)
- Proper orthogonal decomposition (POD)
- Volterra series (VS) and transfer (or describing) functions
- Only HB, POD and VS capture nonlinearities
- HB requires flow be periodic in time
- VS limited by convergence issues and need high-order kernels

Time linearization

- Small (linear) dynamic perturbation about a (nonlinear) mean flow
 - Time domain
 - Frequency domain
- Pros:
 - Computationally very inexpensive
 - Good for linear stability of AE system
- Cons:
 - Cannot capture nonlinearities
 - Cannot determine LCO amplitude

Harmonic Balance

- Assumes flow is periodic & expands in terms of a Fourier series in time
- Retains physical dimensions of a full-order model
- Transforms from time domain to frequency domain
- Pros:
 - Number of harmonic frequencies << time steps</p>
- Cons:
 - Flow must be periodic in time

Reduced-Order Models

- Determine dominant spatial modes & use these modes to represent the flow
- Proper Orthogonal Decomposition offers best approximation for *any* number of modes

Volterra Series & Transfer Functions

- Volterra series in time domain
- Transfer functions (or describing functions for nonlinear case) in frequency domain
- Pros:
 - Generate small computational models from large CFD data sets
- Cons:
 - Approach more developed for dynamically linear case

Extracts:

- time-independent orthonormal basis functions $\Phi_k(x)$
- time-dependent orthonormal amplitude coefficients $a_k(t_i)$

such that the reconstruction

$$u(\mathbf{x}, t_i) = \sum_{k=1}^{M} a_k(t_i) \Phi_k(\mathbf{x}), \quad i = 1, \dots, M$$

is optimal in the sense that the average least square truncation error

$$\varepsilon_m = \left\langle \left\| u(\mathbf{x}, t_i) - \sum_{k=1}^m a_k(t_i) \, \Phi_k(\mathbf{x}) \right\|^2 \right\rangle$$

is a minimum for any given number $m \le M$ of basis functions over all possible sets of orthogonal functions

Optimal property (1) reduces to

$$\int_{D} \langle u(x)u^{*}(y) \rangle \Phi(y)dy = \lambda \Phi(x) \quad (2)$$

 $\{\Phi_k\}$ are eigenfunctions of integral equation (2), whose kernel is the averaged autocorrelation function

$$< u(x)u^*(y) > \equiv R(x,y)$$
(3)

For a finite-dimensional case, (3) replaced by tensor product matrix

$$R(\mathbf{x}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} u(\mathbf{x}, t_i) u^T(\mathbf{y}, t_i)$$

Features

- Provides optimal basis for modal decomposition of a data set
- Extracts key *spatial* features from physical systems with spatial and temporal characteristics
- Reduces a large set of governing PDEs to a much smaller of ODEs

Steps

- Database generation
- Modal decomposition
- Galerkin projection
- Time coefficients computation

Full-order model governing equations

$$\frac{\partial}{\partial t}(\epsilon_{m}\rho_{m}) + \nabla \cdot (\epsilon_{m}\rho_{m}\vec{v}_{m}) = 0$$

$$\frac{\partial}{\partial t}(\epsilon_{m}\rho_{m}\vec{v}_{m}) + \nabla \cdot (\epsilon_{m}\rho_{m}\vec{v}_{m}\vec{v}_{m}) = -\epsilon_{m}\nabla p_{g} + \nabla \cdot \overline{S}_{m} + F_{gs}(\vec{v}_{s} - \vec{v}_{g}) + \epsilon_{m}\rho_{m}\vec{g}$$

$$\epsilon_{m}\rho_{m}C_{p_{m}}\left(\frac{\partial T_{m}}{\partial t} + \vec{v}_{m}\nabla T_{m}\right) = -\nabla \vec{q}_{m} - \gamma_{m}(T_{m} - T_{\ell}) - \Delta H_{rm} + \gamma_{Rm}(T_{Rm}^{4} - T_{m}^{4})$$

$$\frac{N}{N} + \frac{N}{N} + \frac{N}$$

$$(a_m^v)_p(v_m)_p = \sum_{nb} (a_m^v)_{nb} (v_m)_{nb} + (b_m^v)_p$$

$$v(x,t) = \sum_{k=1}^{m^v} \alpha_k^v(t) \varphi_k^v(x)$$

$$\sum_{k=1}^m \alpha_k \left(a_i \varphi_k(x_i) - \sum_{i_{nb}=1}^{NB} a_{i_{nb}} \varphi_k(x_{i_{nb}}) \right) = b_i, \quad i = 1, \dots, N$$

$$\sum_{k=1}^m \alpha_k \left([A] \{\varphi_k\} - \sum_{nb=1}^{NB} [A_{nb}] \{\varphi_{k_{nb}}\} \right) = \{b\}$$

$$\{\varphi_\ell\}^T \sum_{k=1}^m \alpha_k \left([A] \{\varphi_k\} - \sum_{nb=1}^{NB} [A_{nb}] \{\varphi_{k_{nb}}\} \right) = \{\varphi_\ell\}^T \{b\}, \quad \ell = 1, \dots, m$$

$$\left[\tilde{\mathcal{A}}^v \right] \{\alpha^v\} = \left\{ \tilde{\mathcal{B}}^v \right\}$$

Proper Orthogonal Decomposition

- Acceleration methods
 - Database splitting
 - Quasi-symmetrical matrix solver
 - Time step adjustment strategy
 - Updating matrix of time coefficients strategy
 - Sampling strategy

Quasi-symmetry of A Matrix

A matrix for v-velocity

	196.4486	63.3060	6.0469	0.5038	-21.3047	11.9071	2.3488	-6.8064
$ ilde{\mathcal{A}} =$	63.3060	903.4807	-44.1690	6.3410	14.0286	-7.4939	6.1636	19.8724
	6.0459	-44.1687	243.2099	-20.7951	-164.8536	68.0529	19.3275	-42.8377
	0.5039	6.3411	-20.7953	930.9194	31.0348	20.0166	14.3861	15.2768
	-21.3042	14.0288	-164.8535	31.0347	890.8742	32.1664	42.8224	-23.8698
	11.9068	-7.4940	68.0527	20.0167	32.1663	904.3555	-10.8230	26.7999
	2.3477	6.1634	19.3267	14.3861	42.8222	-10.8228	872.6460	92.5161
	-6.8042	19.8722	-42.8362	15.2768	-23.8695	26.7996	92.5161	763.9839

$$\tilde{\mathcal{A}}_{\ell k}^{\epsilon_s} = \{\varphi_\ell\}^T [A]\{\varphi_k\} - \sum_{nb=1}^{NB} \{\varphi_\ell\}^T [A_{nb}]\{\varphi_{k_{nb}}\}, \qquad \ell, k = 1, \dots, m$$

Algorithm for solving quasi-symmetrical matrices

$$\begin{aligned} Ax &= b \\ (A_s + A_n)x &= b \\ A_s x_s^{(1)} &= b \\ x &= x_s^{(1)} + x_n^{(1)} \\ (A_s + A_n)x_n^{(i)} &= -A_n x_s^{(i)} \\ x_n^{(i)} &= x_s^{(i+1)} + x_n^{(i+1)} \\ x &= x_s^{(1)} + x_s^{(2)} + \dots + x_s^{(m)} + x_n^{(m)} \\ \text{Note} &: A_n \text{ can be chosen such that} \\ \text{to reduce number of operations in} \\ -A_n x_s^{(\ell)} \end{aligned}$$

Algorithm for solving quasi-symmetrical matrices

- **1.** For given A, find A_n and A_s
- 2. For given A_s , find L where $LL^T = A_s$
- 3. For given *L* and *b*, find $x_s^{(1)}$
- 4. For given $x_s^{(1)}$ and A_n find $b^{(1)}$
- 5. Repeat steps 3 and 4 until $x_s^{(m)}$ is smaller than a given error

Splitting Matrix A

Split 1

Split 2

	$A_s =$	$\left[\begin{array}{c}a_{11}\\a_{21}\\\vdots\\a_{m1}\end{array}\right]$	$a_{21} \\ a_{22} \\ \vdots \\ a_{m2}$	···· 6	$\begin{bmatrix} a_{m1} \\ a_{m2} \\ \vdots \\ a_{mm} \end{bmatrix}$		A	$s = \frac{1}{2}(A + A)$	A^T)
	$A_n =$	$\left[\begin{array}{cc} 0 & a \\ 0 \\ \vdots \\ 0 \end{array}\right]$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	21 ···· ···	$a_{1m} - a_{2m} - a_{2m} - a_{2m} - a_{2m} = 0$	m1 m2	A_{i}	$n = \frac{1}{2}(A - A)$	A^T)
	Split 1				Split 2				
		$x_s^{(1)}$	-	$x_{s}^{(2)}$		$x_s^{(3)}$	$x_s^{(1)}$	$x_{s}^{(2)}$	$x_s^{(3)}$
1	0.2205	E+00	-0.552	29E-06	0.7659	E-12	0.2205E + 00	-0.3159E-06	-0.3772E-11
2	-0.1401	E + 00	0.350)5E-07	-0.1631]	E-12	-0.1401E + 00	0.4948E-07	0.2289 E- 12
3	0.3053	3E-01	-0.258	36E-06	-0.3920]	E-12	0.3053 E-01	0.3431E-06	-0.2669E-11
4	-0.4188	8E-01	-0.164	45E-07	0.8489	E-14	-0.4188E-01	0.1406 E-07	0.5404 E- 14
5	0.3669	9E-01	-0.802	25E-07	-0.6626]	E-13	0.3669 E-01	-0.2367E-07	-0.6342E-12
6	-0.4223	3E-01	0.497	75E-07	0.32211	E-13	-0.4223E-01	0.4024 E-07	0.3478E-12
7	0.5685	5E-01	0.134	44E-07	0.1147	E-13	0.5685 E-01	0.1726E-06	0.6542 E- 13
8	-0.1910	6E-01	-0.258	38E-07	-0.1567]	E-13	-0.1916E-01	-0.4003E-06	-0.9619E-13

Degree of Non-symmetry

Effect of Degree of Non-symmetry

Number of iterations

Eulerian norm of difference between solutions of the LU decomposition and the present method

POD for Turbomachinery Aeroelastic Analysis

A reduced-order model is not necessarily a low-fidelity solution!

Full-Order Model

Reduced-Order Model, POD 40 modes

POD for Turbomachinery Aeroelastic Analysis

A reduced-order model is not necessarily a low-fidelity solution!

Full-Order Model

Reduced-Order Model, POD 40 modes

POD for Turbomachinery Aeroelastic Analysis

A reduced-order model is not necessarily a low-fidelity solution!

Full-Order Model

Reduced-Order Model, POD 40 modes

ODEx - POD for Two-Phase Flows

ODEx - POD for Two-Phase Flows

Current Related Research Projects

- DOE
 - A Reduced-Order Model of Transport Phenomena for Power Plant Simulation
- AFOSR
 - Rotating Stall Suppression Using Oscillatory Blowing Actuation on Blades (co-PI: O. Rediniotis)
- AFOSR
 - A Novel Method for the Prediction of Nonlinear Aeroelastic Responses (co-PI: T. Strganac)
- Turbomachinery Research Consortium
 - Prediction of Fluid Instabilities in Hole Pattern and Honeycomb Stator Seals
- AFRL/GUIDE Consortium
 - Turbomachinery Aeroelastic Analysis Using a Continuation/ Proper Orthogonal Decomposition Method

Current Research Team

- Thomas Brenner Ph.D. (G8)
- David Liliedahl Ph.D. (G8)
- Forrest Carpenter Ph.D. (G8)
- Greg Worley M.S. (G7)
- Will Carter Ph.D. (G7)
- Raymond Fontenot M.S. & Ph.D. (G7)
- Robert Brown UG (G4)

Questions?

Parallel Rotor-Stator Interaction (PaRSI)

- Reynolds-averaged Navier-Stokes quasi-3D solver
- Features
 - Finite-difference, structured (multiblock), implicit, parallel, unsteady, with rotating, pitching and plunging blades
- 22,300 code lines
- **Sponsor**: Westinghouse Power Generation
- Impact
 - airfoil clocking increased efficiency by up to 2 points
 - clocking is now incorporated in turbomachinery design process

Unsteady Unstructured 3D (UNS3D)

- General Reynolds-averaged Navier-Stokes 3D solver
- Features: Control volume, unstructured, explicit, unsteady, multigrid, parallel
- 11,400 code lines
- **Sponsors** (2000-present): Turbomachinery Research Consortium (for internal flows), AFOSR (for external flows and aeroelastic applications)

• Impact

- internal flows: predicted axial loads on centrifugal compressors to prevent bearing failure; fluid instabilities in honeycomb stator seals
- external flows: predict aerodynamic nonlinearities (shock and flow separation) needed to understand nonlinear fluidstructure interactions

Grid Generator (GG)

- Hybrid (structured/unstructured) 3D grid generator
- Purpose
 - allow very large deformation w/out regriding
 - same topology from hub to tip for extreme turning
 - facilitate parallel processing

• Features

- O-grid structured (Poisson solver or conformal map-ping) for viscous region
- deforming triangular prisms
- topologically identical layers for parallel processing
- 8281 code lines

Sponsors

 Turbomachinery Research Consortium & AFOSR (2000present)

Combustion and Rotor-Stator Interaction (CoRSI)

• Combustion in rotating machinery, based on RANS

Features

- Finite difference, unsteady, implicit
- 15,600 code lines
- Sponsors (2001-present)
 - Westinghouse Science and Technology Center
 - U. S. Department of Energy
 - Siemens (Germany)
- Impact
 - Supports development of turbine-combustors, a *"nascent and compelling"* propulsion thrust area (National Research Council's Committee on Air Force and DoD Aerospace Propulsion Needs)

Nonlinear Aeroelastic Interaction

Motivation

- Evidence of beneficial responses attributed to nonlinearities
 - example: bird flight
- Evidence of adverse responses attributed to nonlinearities (that affect air vehicles)
 - examples:
 - Limit Cycle Oscillation (LCO): F-5, F-15 STOL, F-16, F-111, F/A-18
 - Residual Pitch Oscillation (RPO): B-2

Physical Sources of Nonlinearities

- Structural
 - Geometric structural nonlinearities (ex.: panel flutter)
 - Control surface freeplay
 - Internal structural damping
 - Internal and auto-parametric resonances
- Aerodynamic
 - Flow separation (& intermittent TE separation)
 - Shock motion (& interaction with boundary layer)

Nonlinear Aeroelastic Interaction

A tightly coupled CFD-CSM aeroelastic solver models nonlinear structural and aerodynamic interaction:

- RANS-based Aerodynamic Model
- Nonlinear Structural Model
- Tightly Coupled Solution

Remarkable in-plane responses arise from nonlinear coupling with out-of-plane bending and torsion_____

Aeroelastic Model

- Aerodynamics model
 - Reynolds-averaged Navier-Stokes equations
 - Shear stress transport (SST) turbulence model
- Structural model
 - Nonlinear beam (T. Strganac)
 - Nonlinear equations of motion (with quadratic and cubic nonlinearities)
 - In-plane bending
 - Out-of-plane bending
 - Torsion
 - FEM
 - plate elements (Michael McFarland, UIUC)
 - brick elements (John Whitcomb, TAMU)
- Tightly coupled aerodynamics and structural models

Mesh Generation

Requirements

- Allow large wing deformations without remeshing
- Allow a good control of grid size in boundary layer
- Facilitate parallel computation
- Implementation
 - Layers of topologically identical elements in spanwise direction
 - Structured O-grid around the wing surface
 - Unstructured grid outside of O-grid mesh

Mesh Generation

Mesh Generation O-Grids

Poisson solver

Conformal mapping

Mesh Deformation

- Deformations
 - elastic axis displacement
 - wing rotation
 - chord-wise bending
- Techniques
 - Spring analogy
 - Conformal mapping
 - Boundary orthogonal layers

Mesh Generation Chord-wise Deformation

GG - Grid Quality

GG - Grid Quality

Flow Solver

- Finite volume method
- Dual-mesh cell-vertex method
- Edge-based method
- Upwind method for convective flux
- Least-squares with QR (or Green-Gauss) for gradients
- Piecewise linear reconstruction
- Multi-stage explicit time integration with local time stepping and residual smoothing
- Deforming cell capabilities (using GCL)
- Multigrid
- Parallel computation

F-5 Wing & Transport Jet Wing

Validation

- Heavy Goland wing at Mach=0.09 (AIAA-2006-2073)
- Heavy Goland wing at Mach=0.7 (AIAA-2006-2073)
- Original Goland wing, stability boundary (IFASD 2007)
- F-5 wing (AIAA-2007-330)
- Nonlinear Aeroelastic Test Apparatus (NATA) wing

nonlinear pitch linear plunge

UNS3D - Examples

UNS3D - Examples

UNS3D - Examples

