

Reglarea traficului de proteine de la reticulul endoplasmic spre si prin aparatul golgi: o mai buna intelegere a mecanismelor moleculare ale bolilor neurodegenerative

> Florin Manolea University of Alberta Canada

Golgi complex and neurodegenerative diseases

- Alzheimer disease (Banoyannis et al., 2004)
- Amyotrophic lateral sclerosis (Stieber et al., 1998)
- Creutzfeldt-Jacob disease (Sakurai et al., 2000)
- Multiple system atrophy (Sakurai et al., 2002)
- Parkinson's disease (Fujita et al., 2006)
- Spinocerebelar ataxia type 2 (Huynh et al., 2003)
- Niemann-Pick type C (Lin et al., 2007)

Introduction

• Players and regulators of ER-Golgi-PM protein traffic

Results

- Overexpression studies
- Knockdown studies

Outline

Introduction

• Players and regulators of ER-Golgi-PM protein traffic

Results

- Overexpression studies
- Knockdown studies

ER-Golgi-PM protein traffic

ER-Golgi-PM protein traffic is bi-directional

ER-Golgi-PM protein traffic and associated coat proteins

Coat proteins facilitate dynamic and bi-directional protein traffic in the central vacuolar system

<u>Coats</u>

clathrin AP-2

clathrin AP-1, 3, 4 GGA1, 2, 3

COPI

COPII

Arfs are molecular switches regulating coat assembly and lipid composition

Small GTPases regulate coat recruitment

Coats clathrin AP-2	GTPases Arf6 Arf1
<mark>clathrin</mark> AP-1, 3, 4 GGA1, 2, 3	Arf1 Arf3, 4, 5?
COPI	Arf1 Arf4, 5?
COPII	Sar1

GEFs and GAPs regulate Arfs activity

GEFs activate Arfs

GBF1 and BIG1/2 are the only Arf-GEFs localized to Golgi complex

Coats clathrin AP-2	GTPases Arf6 Arf1	
<mark>clathrin</mark> AP-1, 3, 4 GGA1, 2, 3	Arf1 Arf3, 4, 5?	BIG1/2
COPI	Arf1 Arf4, 5?	GBF1
COPIL	Sar1	

Arf-Guanine nucleotide exchange factors, or GEFs, initiate coat assembly on the membrane

Arf-Guanine nucleotide exchange factors, or GEFs, initiate coat assembly on the membrane

GTPase activating proteins, or GAPs, participate in cargo selection and coat formation

Brefeldin A blocks Arf-GEF activity and prevents following Arf activity

BFA blocks Arf activation and coat assembly on Golgi membranes

✓ GBF1 and BIGs belong to two different sub-families.

- ✓ Both GBF1 and BIGs displays BFA sensitivity *in vivo*.
- ✓ GBF1, not BIG1, has a preference for Arf5 *in vitro*.
- \checkmark BIG2 is specific for Arf1 and Arf3.
- ✓ GBF1 and BIGs function as dimers:
 - >GBF1 most probably forms homodimers

BIG1 and BIG2 have different function but they also must have a common function (75% of them form hetero-dimers)

- ✓ GBF1 and BIGs belong to two different sub-families.
- ✓ Both GBF1 and BIGs displays BFA sensitivity *in vivo*.
- ✓ GBF1, not BIG1, has a preference for Arf5 *in vitro*.
- \checkmark BIG2 is specific for Arf1 and Arf3.
- ✓ GBF1 and BIGs function as dimers:
 - >GBF1 most probably forms homodimers
 - BIG1 and BIG2 have different function but they also must have a common function (75% of them form hetero-dimers)

- ✓ GBF1 and BIGs belong to two different sub-families.
- ✓ Both GBF1 and BIGs displays BFA sensitivity *in vivo*.
- ✓ GBF1, not BIG1, has a preference for Arf5 *in vitro*.
- ✓ BIG2 is specific for Arf1 and Arf3.
- ✓ GBF1 and BIGs function as dimers:
 - >GBF1 most probably forms homodimers

BIG1 and BIG2 have different function but they also must have a common function (75% of them form hetero-dimers)

- ✓ GBF1 and BIGs belong to two different sub-families.
- ✓ Both GBF1 and BIGs displays BFA sensitivity in vivo
- ✓ GBF1, not BIG1, has a preference for Arf5 *in vitro*.
- ✓ BIG2 is specific for Arf1 and Arf3.
- ✓ GBF1 and BIGs function as dimers:
 - >GBF1 most probably forms homodimers

BIG1 and BIG2 have different function but they also must have a common function (75% of them form hetero-dimers)

- ✓ GBF1 and BIGs belong to two different sub-families.
- ✓ Both GBF1 and BIGs displays BFA sensitivity *in vivo*.
- ✓ GBF1, not BIG1, has a preference for Arf5 *in vitro*.
- ✓ BIG2 is specific for Arf1 and Arf3.
- ✓ GBF1 and BIGs function as dimers:
 - GBF1 most probably forms homodimers
 - BIG1 and BIG2 have different functions but they also must have a common function (75% of them form hetero-dimers)

GBF1 and BIG1 localize to *cis*- and *trans*compartments of Golgi complex, respectively

TGN38 / BIG1

GBF1 / BIG1

Zhao X. et al., Mol Biol Cell, 2002

GBF1 and **BIG1** overlap with different coat proteins

BIG1 / β-COP **BIG1 / clathrin**

Zhao X. et al., Mol Biol Cell, 2002

Hypothesis:

GBF1 and BIGs have different functions because they have distinct subcellular localizations and colocalize with different coat proteins

Method:

Examine relative impact of **overexpression** and **knockdown** of the two GEF families on COPI recruitment and maintenance of the Golgi complex

Introduction

• Players and regulators of ER-Golgi-PM protein traffic

Results

- Overexpression studies
- Knockdown studies

GBF1 overexpression protects COP1

BIG1 overexpression protects AP-1

GBF1 and BIG1 relate to COP1 and clathrin, respectively

Introduction

• Players and regulators of ER-Golgi-PM protein traffic

Results

- Overexpression studies
- Knockdown studies

Knockdown studies

- Identify effective target sequences
 - synthetic siRNAs duplexes
 - shRNAs produced from a pSupressor plasmid
- Knockdown effects on ER and Golgi morphology and anterograde protein traffic

Identification of target sequences for RNAi-mediated knockdown

Identification of effective target sequences for knockdown of GBF1 and BIG1

GBF1 knockdown and specific markers analyzed

Knockdown of GBF1 redistribute the juxtanuclelar COP1 coat staining

Knockdown of GBF1 redistribute the juxtanuclelar p115 staining

Knockdown of GBF1 redistribute the juxtanuclelar Manll staining

Knockdown of GBF1 redistribute the juxtanuclelar TGN38 staining

Knockdown of GBF1 does not affect COP2 localization

GBF1 is essential for maintenance of the Golgi complex but not for ERES

