Functional MRI for studying the interaction between pain and cognition

Adina Mincic University of Oradea

Pain – a multidimensional experience (Melzack R & Casey KL, 1968)

Components

- Sensory discriminative
- •Affective motivational
 - •Cognitive evaluative

Why study brain response to pain?

- Fundamental

 pain is related to consciousness:
 mind brain problem
- Clinical
 - -better pain management
 - -designing new analgesics

Pain matrix

- Sensory discriminative : brainstem, thalamus, somatosensory cortices SI (primary) and SII (secondary);
- Affective motivational : insula, hypothalamus, amygdala, hippocampus, ACC (limbic system);
- Cognitive evaluative : posterior parietal cortex (PPC), prefrontal cortex (PFC), supplementary motor area (SMA) and primary motor cortex;

Pain network - shares components with other cognitive functions

- A common experience: pain can affect the ability to carry out complex cognitive tasks
- Chronic pain patients (chronic migraine, low back pain,...) are affected in everyday life
- Neuroimaging studies: Attention and cognition influence the perception of pain (Bantick et al., 2002) Interactions between cognition and emotion (Drevets et al., 1998)

How does pain interact with the cognitive activity?

• Brain dynamics is not linear : a new cognitive component B, added to the task, modify the implementation of the preexisting component A (Friston KJ et al., NeuroImage, 1996)

Questions

- What is the neurophysiological substrate of this interaction?
- Does the modulation effect depend on the -type of cognitive task?
 - -difficulty level of the task?
 - -psychological variables?

Experiment

- Two cognitive tasks*:
 - -semantic
 - -mental arithmetic
- 2x2 factorial design
 - -2 levels of sensory stimulation
 - -2 levels of difficulty in each cognitive task

*Rémy et al., NeuroImage 2003

Methods

- 12 healthy volunteers $(24.2 \pm 3.4 \text{ years old})$
- 3T head-only system
- Functional imaging: Gradient-echo single-shot EPI 16 contiguous axial-oblique slices, 5-mm thickness
- FOV = 20 cm, matrix 64x64
 Volume (16 slices) acquired in TR = 3 s

TASKS

PAIN

- Thermode with a 3x3 cm² flat probe on the palm of the left hand
- Alternate periods of rest (9 s) and stimulation (15 s), 4 cycles
- Painful stimulation: 46 to 49°C (pain threshold)
- Warm stimulation (baseline): 39°C

TASKS

COGNITIVE

- Visual presentation through goggles
- Synchronized with the thermal profile

SEMANTIC

- Word repetition
- Word generation within a given category

TASKS

MENTAL ARITHMETIC

- Simple equations one digit numbers multiplication (ex. 4x6=24, displayed for 3 s each)
- Complex arithmetic one digit by two digit numbers multiplications (ex. 16x9=144, displayed for 7.5 s each)

Experimental design

• SEMANTIC TASK

- 4 scanning conditions
- (1) warm stimulation + word repetition (WR)
- (2) warm stimulation + word generation (WG)
- (3) painful stimulation + word repetition (PR)
- (4) painful stimulation +word generation (PG)

	Beh	avioral	l data	
	Pain intensity	Unpleasan tness	Task difficulty	
WR	1.2	1.2	0.1±0.3	
WG	1.2	1	1.6±1.5	P<0.017
PR	6.1±1.4	6.2	1.4±1.5 🗸	\times
PG	6.5±1.5	6.2	2.7±2.0 ←	P<0.075

P<0.026, paired t-test

• Easy task significantly perceived more difficult during pain

Main Effect of pain masked by main effect of semantic

Regions of the semantic network, showing increased activity when pain is superposed

- L occipital cortex (BA19 to BA18)
- L Broca's area (BA45, BA44)
- L SMA (BA6/4)
- midCG (BA32')
- R thalamus
- Posterior CG (BA31)

- Language area (Broca's area)
 - Similar increase observed with a disturbing interference during cognition (Ghatan et al., 1998)

MENTAL ARITHMETIC Experimental design

4 scanning conditions:

(1) warm stimulation + simple arithmetic (WSA)

- (2) warm stimulation + complex arithmetic (WCA)
- (3) painful hot stimulation + simple arithmetic (PSA)

(4) painful hot stimulation + complex arithmetic (PCA)

Behavioral data							
	WSA	PSA		WCA	PCA		
Pain Int	1.9±1.9	6.5±1.5	P<0.0001	2.0±2.3	6.3±1.3	P<0.0001	
Unpl.	3.0±2.2	6.3±1.6	P<0.001	1.6±2.0	6.1±1.9	P<0.0001	
Diff.	2.3±1.6	4.1±1.4	P<0.005	5.1±1.8	5.5±1.6	n.s.	

•Simple arithmetic task was perceived as significantly more difficult during pain

Behavioral data

Performance

	WSA	PSA		WCA	PCA	
Accuracy (%)	95.3±6.5	84.5±1 4.4	P<0.05	72.0±25.1	77.2±18.3	n.s.
RT	1.6±0.3	1.5±0.3	P<0.001	4.5±1.1	4.4±1.1	n.s.

Performance was significantly poorer during pain in SA, but was equivalent during pain and warm in CA

Complex arithmetic

- Different influence of pain on the activity in distinct brain regions
- Increases: L prefrontal cortex (BA44, BA9), anterior insula
- Decrease: medial frontal cortex, SMA, and L posterior parietal lobe (BA7, BA39)
- Possible change of strategy when performing the complex task during pain exeprience

Interaction analysis

Negative interactions

- left STG (BA22) and R somatosensory cortex (contra-lat.)
 → suppression of the task-irrelevant sensory input under increased attentional load
- medial thalamus, perigenual ACG medial pain system, believed to be involved in the pain quality evaluation and affective aspects integration;

Interaction analysis

Positive interactions

- DMPFC (BA 10) in pain studies DMPFC was related to analgesia during placebo (Petrovic P. et al, Science 2002)
- observed as well in interaction between pain and semantic generation task
- the increased activity in mental calculation during pain might be ascribed to the initiation of an analgesic response

