Combined PET and MRI Systems – Potential Neurological Applications

Ciprian Catana, M.D., Ph.D.

A.A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School

Outline

PET imaging basics.

Integrated PET/MRI systems:

- Motivation.
- Challenges and limitations.
- Current state-of-the-art:
 - Small animal systems
 - Human system
- Opportunities/advantages:
 - "Technical" perspective
 - "Neurological" perspective

Introduction

- Imaging techniques important tools to investigate complex living systems.
- Each imaging modality measures fundamentally different information:
 - PET measures concentration of molecules labeled with positronemitting radionuclides.
 - MRI measures proton density and tissue relaxation times.
- No imaging modality can provide information on all aspects of structure and function – *multimodality imaging systems.*

Positron Emission and Annihilation

PET Scanner Concept

scintillator

PET Scanners

Small animal imaging

GE Advance

Clinical imaging

Siemens HRRT

Positron Emitting Radionuclides

Isotope	Half-life	β^+ fraction	Max. Energy	rms (mm)
C–11	20.4 mins	0.99	0.96 MeV	0.4
N–13	9.96 mins	1.00	1.20 MeV	0.7
O–15	123 secs	1.00	1.74 MeV	1.1
F–18	110 mins	0.97	0.63 MeV	0.3
Na–22	2.6 years	0.90	0.55 MeV	0.3
Cu–62	9.74 mins	0.98	2.93 MeV	2.7
Ga–68	68.3 mins	0.88	1.90 MeV	1.2
Rb-82	78 secs	0.96	3.15 MeV	2.8
I –124	4.18 days	0.22	3.16 MeV	2.8

PET-labeled Radiopharmaceuticals

cyclotron ¹¹C, ¹³N, ¹⁵O, ¹⁸F hemodynamic parameters (H₂¹⁵O, ¹⁵O-butanol, ¹¹CO, ¹³NH₃.....)
substrate metabolism (¹⁸F-FDG, ¹⁵O₂, ¹¹C-palmitic acid....)
protein synthesis (¹¹C-leucine, ¹¹C-methionine, ¹¹C-tyrosine)
enzyme activity (¹¹C-deprenyl, ¹⁸F-deoxyuracil...)
drugs (¹¹C-cocaine, ¹³N-cisplatin, ¹⁸F-fluorouracil...)
receptor affinity (¹¹C-raclopride, ¹¹C-carfentanil, ¹¹C-scopalamine)
neurotransmitter biochemistry (¹⁸F-fluorodopa, ¹¹C-ephedrine...)
gene expression (¹⁸F-ganciclovir, ¹⁸F-antisense oligonucleotides...)

MR Imaging Basics

X-RAY CT

MRI

PET

Combined PET and MRI – Why?

	PET	MR
PROs	 Exceptionally sensitive assays of a wide range of biological processes Quantitative technique 	 Exquisite high resolution anatomical information with excellent soft tissue contrast Physiological parameters Metabolic and biochemical information
CONs	 Poor spatial resolution Limited anatomic information Involves ionizing radiation 	 Poor sensitivity Absolute quantification challenging

Challenges in Combining PET and MRI

- Limited space available inside the MR scanner.
- No ferromagnetic components allowed.
- Homogeneity of the B₀ field.
- Radiofrequency interference (RFI) between the MR transmit/receive coils and the electronics of the PET system.
- Susceptibility artifacts and eddy currents related to the placement of materials inside the MR magnet.
- Photomultiplier tubes (PMTs) are very sensitive to magnetic fields.
- Effect of the magnetic field (both the static and switching gradient fields) on the PET (RFI, heating, vibrations, etc).
- Cost !

Approaches for Combining PET and MRI

Current State-of-the-art Systems

- Small animal imaging PET/MR
 - University of California Davis
 - University of Tübingen
- Human imaging MR-PET
 - BrainPET prototype (Siemens Medical Solutions) installed at MGH

UC Davis PET/MRI Project

Aims:

- Design and build a high resolution, high sensitivity, multi-ring small-animal PET scanner integrated with a 7 Tesla small-animal MR system.
- Minimal interference between the two systems.

UC Davis MR-compatible PET Insert

UC Davis PET/MRI System

PET			
	RF coil	Gradient × set	

Characteristic	Value
Crystal size	1.43x1.43x6 mm ³
Crystal pitch	1.51 mm
Fiber size	1.95x1.95 mm ²
Fiber bundles' length	10 cm
PSAPD size	14x14 mm ²
Number of modules	16
Ring diameter	60 mm
Axial FOV	12 mm
Transaxial FOV	35 mm
Number of crystals	1024
Insert length	55 cm
Insert outer diameter	11.8 cm

C. Catana et al., *J. Nuclear Medicine* 2006; 47(12): 1968-1976

PET

- Insert temperature $\sim -10^{\circ}C$
- LLD set just above the noise level for each detector module.
- Timing window = 25 ns.
- Basic normalization using a uniform phantom.
- No other corrections applied.
- Fully 3D ML-EM reconstruction.

Brain imaging coil

MRI

- Acquired simultaneously with the PET data.
- Custom-made brain and whole body RF coils with heating to maintain animal at 37°C.
- Tuning and matching.
- Automatic first order shimming.

Whole body imaging coil

Mouse FDG Tumor Imaging

- 10⁶ MC38 cells
- 10 days post injection

PET

- − ~200 µCi ¹⁸F-FDG
- Voxel size: 0.35 x 0.35 x 1.5 mm³

MR

- RARE sequence
- Whole body imaging RF coil
- FOV=4 x 4 cm²
- Matrix size 256 x 256

C. Catana et al *Proc. Nat. Acad. Sc. USA*, 2008; 105 (10): 3705-3710

Bone Scan Mouse Whole-Body PET

- ~200 µCi ¹8F−
- 6 min scans for 8 bed positions covering a total axial FOV of 68 mm
- Voxel size: 0.35 x 0.35 x
 1.5 mm³

MR

- RARE sequence
- Respiratory gating
- Whole body imaging RF coil
- FOV=4x4 cm²
- Matrix size 256x256

Beyond Morphological MRI

Advanced MR in the presence of the PET insert:

- In vivo mouse brain MR spectroscopy
 - Volume-selective *in vivo* ¹H spectroscopy
 - 3 x 3 x 3 mm³ voxel positioned centrally in the mouse brain.
 - PRESS sequence (TR/TE=2500/12 ms)
 - Water suppression using a CHESS sequence.

– DWI EPI

- 4 shot EPI (TR/TE = 2000/32 ms).
- FOV = 1.92 x 1.92 cm², matrix size 128 x 128, slice thickness = 0.75 mm.
- Diffusion: Δ=14 ms, δ= 7msec; b = 100, 200, 600, 800, 1400 sec/mm².

Univ. of Tuebingen PET/MRI System

Laboratory for Preclinical Imaging & Imaging Technology

University of Tübingen, Germany 23

100%

- (a) [¹¹C]-*d-threo*-Methylphenidate PET.
- (b) 3D TSE MR sequence.
- (c) Fused images.
- (d) Time activity curves derived from the dynamic PET data.

M.S. Judenhofer et al., *Nature Medicine*, 2008; epub March 23

Laboratory for Preclinical Imaging & Imaging Technology

University of Tübingen, Germany 24

Clinical MR-PET

Siemens BrainPET Prototype Design

- Standard MR 3T tunnel (60 cm ID)
- BrainPET insert (35 cm ID)
- 32 Detector Cassettes
- 6 LSO Blocks/Cassette
 - crystal size 2.5 x 2.5 x 20 mm^3
 - 12 x 12 crystals/block
 - 3 x 3 array of Hamamatsu APDs
- 192 LSO Blocks total
- 1732 APDs total
- 19.25cm axial / 30cm transaxial
- Air/Water cooling

Courtesy of Siemens Medical Solutions

BrainPET – Preliminary Results

- First APD-based PET scanner capable of imaging the human brain in one bed position
- First Performance Results:
 - Sensitivity: in stand alone PET mode ~25% higher than the HRRT [400-650 keV]
 - Spatial Resolution: <3 mm at 8 cm radius (cortex)
 - Timing Resolution: <6 ns (APD); timing window used is 12 ns
 - Scatter Fraction: ~40% (NU2-1994: 43.6% @ 0 cm, 40.9% @ 4 cm)

Integrated MR-PET Scanner at **MGH**

Simultaneous MR-PET Data Acquisition

20 cm diameter phantom; hole size range 2.5 6mm; center to center=4 times hole diameter

PET

- 1.5 mCi F-18 water
- 20 min acquisition scan
- OSEM 3D reconstruction

MR

- FLASH (shown), TSE, MP-RAGE sequences run simultaneously
- CP coil

Simultaneous MR-PET Data Acquisition

54 year old with malignant glioma and cutaneous extension

PET

•5.45 mCi FDG injected approx.
2.5 hours prior to data acquisition
•OSEM 3D reconstruction
•Attenuation correction performed based on the MR data

•T1 MP-RAGE, T2 SPACE (shown), FLAIR, DTI, CSI, SVS sequences run simultaneously •CP coil

Combined MR-PET – Opportunities

"Technical" perspective Neurological perspective

Combined MR-PET – Technical perspective

Improving the PET Data Analysis/Quantification

- Attenuation correction.
- Motion correction.
- Partial volume effect correction.
- Arterial input function estimation.
- PET image reconstruction.
- Spatial resolution positron range effect.

Attenuation Correction

34

Attenuation Correction

- Important for both qualitative and quantitative analysis.
- MR-based attenuation correction:
 - Approach:
 - MR image segmentation.
 - Assign known attenuation coefficients.
 - Calculate attenuation correction factors.
 - Advantage:
 - Reduced radiation dose and acquisition time.

CT

MR-based bone segmentation

Motion Correction

- Subject motion during the PET data acquisition can lead to image blurring or introduce artifacts.
- MR-assisted motion correction
 - Approach:
 - Acquire MR data repeatedly during the emission scan.
 - Generate motion log file.
 - Correct on an event-by-event basis before image reconstruction
 - Advantage:
 - Avoids mismatches between the transmission and emission data.
 - More accurate than optical tracking approaches.

Motion Correction

Translations

Andre J.W. van der Kouwe et al, Magnetic Resonance in Medicine 2006; 56: 1019-1032

With motion correction

No motion

correction

Partial Volume Effects

- Caused by the limited spatial resolution.
- Under- or overestimation of the tissue activity concentration
- To correct we need to know:
 - Size of the object
 - Reconstructed image resolution

(Cherry SR, Sorenson JA, Phelps ME. *Physics in Nuclear Medicine*, 3rd ed.)

Partial Volume Effects

- MR-based partial volume correction:
 - Excellent soft tissue contrast.
 - Different segmentation task (i.e. white and gray matter, cerebrospinal fluid).
 - Combined MR-PET scanner:
 - Extremely accurate co-registration of the two data sets.

(Images courtesy of Andre J.W. van der Kouwe and Bruce Fischl, MGH)

Arterial Input Function Estimation

- PET data quantification:
 - Dynamic PET data acquisition.
 - Tracer compartment model.
 - Arterial input function (AIF).
 - "Gold standard" arterial blood sampling.

• MR-assisted AIF estimation:

- Approach:
 - Manually/automatically define a ROI across the vessel.
 - Obtain an average value for all the voxels in the ROI.
 - Correct for confounding effects (partial volume and spillover).
 - Regional CBF information.
- Advantages:
 - Minimally invasive.
 - Regional vs global estimate.

PET Iterative Reconstruction

Spatial Resolution – Positron Range

$$\vec{F}_{Lor} = q \vec{V} \vec{X} \vec{B}$$

$$R = \frac{0.334}{B} \sqrt{(2m_p E_t) + E_t^2}$$

V – positron velocity (vector)

B – magnetic field (vector)

q - particle charge

"x" - cross product operation

 E_t – component of the positron kinetic energy (MeV) perpendicular to the magnetic field

m_p – rest mass of the positron

Combined MR/PET – Neurological Perspective

- Brain Tumors Glioblastoma Multiforme
- Dementias Alzheimer's Disease
- Cerebrovascular Diseases Ischemic Stroke
- •

Glioblastoma Multiforme

- 40% of all primary malignant brain tumors.
- 13,000 persons/year in US.
- Average survival less than 1 year, <4% of patients survive 5 years or more.
- Standard initial therapy:
 - Maximal surgical resection;
 - Combined daily tomozolomide and radiation;
 - 6 monthly cycles of temozolomide.
- Pathological features:
 - Loss of BBB integrity;
 - Severe hypoxia with tumor necrosis;
 - Marked angiogenesis with microvascular proliferation.

Anti-angiogenic Therapy

Vascular Normalization Concept

(R.K. Jian et al; Nature Reviews Neuroscience, 2007, 8: 610-622)

Glioblastoma Multiforme – MRI

T.T. Batchelor, A.G. Sorensen et al; Cancer Cell, 2007, 11: 83-95

Glioblastoma Multiforme – PET

Chen et al, J Nucl Med 2005; 46:945-952

(A) MRI (contrast-enhanced T1-weighted image), (B) ¹⁸F-FDG PET, (C) ¹⁸F-FLT PET

M Bruehlmeier et al; *J Nucl Med* 2004; 45:1851-1859

Glioblastoma Multiforme – MR-PET

- Vascular permeability
- Blood volume
- Blood flow
- Mean transit time

MRI

Anti-permeability or anti-tumor effects?

- Metabolism
- Proliferation > PET
- Hypoxia

Ideally: minimally invasive, quantitative, reproducible.

Alzheimer's Disease

- 60-70% of all dementias.
- 4.5 million people in US (14 million by 2050).
- The cost for care ~\$100 billion/year in US.
- Pathological features:
 - β-amyloid plaques
 - neurofibrillary tangles (NFTs)
- Current treatment symptomatic.

J Reichert et al; *Nucleic Acids Res.* 2002; 30: 253-4; A. Drzezga et al; *Eur J Nucl Med Mol Imaging* 2008; 35 Suppl.1: S4-S11

Alzheimer's Disease – PET

¹⁸F-FDG PET (glucose metabolism)

A. Drzezga; Methods 2008; 44: 304-314

Alzheimer's Disease – PET

¹¹C-PIB PET (amyloid deposition)

Alzheimer's Disease – MRI

BC Dickerson and RA Sperling; NeuroRx: J Am Soc Exp NeuroTherap 2005; 2, 248-360

Alzheimer's Disease – MR-PET

- Advantages:
 - Complementary information about brain anatomy, chemistry, physiology and pathology in a single imaging session.
 - Improved PET data quantitation (i.e. PVC, AIF estimation, motion correction).
- Potential applications:
 - Early diagnosis.
 - Patient stratification.
 - Assess the efficiency of disease modifying therapies (e.g. anti-amyloid agents).

Ischemic Stroke

- Stroke is the third leading cause of death in US (160,000) and first cause of adult disability;
- 85% of the 780,000 cases/year are ischemic.
- Three tissue compartments have been identified:
 - Core (irreversibly damaged tissue)
 - Penumbra (hypoperfused, at risk tissue)
 - Oligaemia (normal/slightly reduced perfusion)

KW Muir et al; Lancet Neurol 2006; 5: 755-768

Ischemic Stroke – PET

Ischemic Stroke – MRI

Perfusion-diffusion mismatch concept

Y Ozsunar and AG Sorensen et al; Topics in MRI 2000; 11(5): 259-272

Ischemic Stroke – MR-PET

- Advantages:
 - Simultaneous measurements
- Potential applications:
 - Calibrate MRI on PET
 - Penumbra vs PWI-DWI mismatch
 - Better selection of patients that could benefit from thrombolytic therapy beyond 3 hours.
 - Follow-up.

Sobesky et al; *Stroke* 2005; 36: 980-985

Conclusions

- MR compatible PET inserts were built and initial imaging tests were performed.
- *In vivo* simultaneous studies were successfully performed.
- The opportunities for PET/MRI are wide open.
- Existing neurological applications might benefit from this new technology.
- New molecular imaging applications will almost certainly emerge.

New Technologies

- "New directions in science are launched by new tools much more often than by new concepts.
- The effect of a concept-driven revolution is to explain old things in new ways.
- The effect of a tool-driven revolution is to discover new things that have to be explained."

Freeman Dyson, Imagined Worlds

Acknowledgements

- University of California, Davis
 - Yibao Wu
 - Jinyi Qi
 - Angie Y. Louie
 - <u>Simon Cherry</u>

California Institute of Technology

- Russell E. Jacobs
- Daniel Procissi
- Andrey Demyanenko
- University of Tubingen
 - Bernd J. Pichler
 - Martin S. Judenhofer
- Radiation Monitoring Devices, Inc
- Siemens Medical Solutions
- NIH grants R01 EB000993, R21 EB00448301

- Massachusetts General Hospital
 - Thomas Benner
 - Andre van der Kouwe
 - Ovidiu Andronesi
 - Dominique Jennings
 - Elizabeth Gerstner
 - Scott Plotkin
 - Anna-Liisa Brownell
 - Nat Alpert
 - Bruce Rosen
 - <u>Greg Sorensen</u>
- Siemens Molecular Imaging
 - Larry Byars
 - Christian Michel
 - Matthias Schmand
- Siemens MRI
 - Michael Hamm
- NCRR