Pt and Au shell - bimetallic core electrocatalysts through partial electroless replacement of metal (M) deposits by Pt or Au (M: Pb, Cu, Co, Ni)

Principle of electroless replacement of metals "*transmetalation* **"**

Mnoblen+ + n/m M → **Mnoble +n/m Mm+**

 $M_{\text{noble}}^{\text{n++}} + \text{n e-} \leftrightarrow M_{\text{noble}}$ E^0_{noble} E^0 M^{m+} + me⁻ \leftrightarrow M E $\boldsymbol{0}$ $_{\rm noble}$ - ${\rm E}^0$ $>$ 0

e.g.

PtCl 62- + 2 M → **Pt + 2 M2+ + 6 Cl** − **2 AuCl 4- + 3M** → **2 Au + 3 M2+ + 8 Cl** − **M: Pb, Cu, Co, Ni** $Cu^{2+}+2e^- \leftrightarrow Cu$ $E^0 = +0.340$ V $\rm Pb$ $^{2+}{+}$ $\rm 2e$ $\overline{} \rightarrow$ Pb $E^0 = -0.126$ V $\text{Ni} \,^{2+}\text{+}2\text{e}^- \leftrightarrow \text{Ni} \quad \text{E}^0 = -0.257 \text{ V}$ $\rm Co$ $^{2+}{+}$ $2e$ $\overline{} \leftrightarrow \overline{}$ ${\rm E}^0$ = -0.277 V PtCl_{6} ²⁻⁺ 4e $- \leftrightarrow$ Pt + 6Cl⁻ E⁰ = +0.744 V $\rm{AuCl_4^{-+}3e}$ $- \leftrightarrow$ Au + 4Cl⁻ E⁰ = +1.002 V

favourable exchange

Characteristics of the presented method variant

¾ Thick electrodeposits of M (Pb, Cu, Co, Ni) are electrodeposited (equivalent of 300-1500 flat ML) on glassy carbon (GC) substrates:

- avoid complete M dissolution; ensure good GC coverage
- form Pt or Au-shell M-containing-core particles

(use the method for catalysts with non-noble/noble metal interactions)

- tune the composition of the Pt-M, Au-M bi-metallic catalysts.
- ¾Electrochemical treatment (positive potentials):
- ensure that only particles with defect-free Pt or Au shells remain

¾Room temperature during all process steps (no annealing):

- skip energy and labour intensive step
- study of interactions of the non-alloyed Pt-M core to the Pt shell

SEM and EDS of indicative M, Pt(M) and Au(M) deposits

exchange activation

SEMs of M, Pt(M) and Au(M) tested

Pt(Pb 27%) (from1000 ML)

Pt(Ni 23%) (from 300 ML)

Pt(Co 27%) (from 300 ML)

Au(Cu 32%) (from1500 ML)

Au(Pb 20%) (from1000 ML)

Au (Ni 5%) (from 300 ML)

Au (Co 4%) (from 300 ML)

Electrochemical characterisation-I

¾ Surface electrochemistry same as of bulk Pt and Au: only Pt or Au on the surface

▶ Electroactive surface areas: 2-8 - fold increase from geometric area

Electrochemical characterisation-II

Hydrazine oxidation on Pt(Cu) Formic acid oxidation on Pt(Pb)

► Cu UPD would hinder hydrazine oxidation: Cu does not re-deposit from the core to the Pt shell

► Pb UPD would catalyze formic oxidation: Pb does not re-deposit from the core to the Pt shell

Sputter-etch AES characterisation

Hydrogen evolution reaction (*HER* **)**

¾ unaffected HER at Pt(Pb):

no DFT predictions; lower Wegner-Scheizer radius but higher Pauling electronegativity

¾ suppression of HER at Pt(Co), Pt(Ni) and Pt(Cu): **weakening** of the Pt(M)-H_{ads} bond strength

 \thicksim d-band center ($\bm{\epsilon}_{\sf d}$) lowering due to strain and ligand effects

(DFT predictions by Nø rsko v and coworkers; experimental evidence)

~ hydrogen binding energy trends

(DFT predictions by Mavrikakis and coworkers)

candidates for **hydrogenation reactions**

(intermediate M-H bond strength)

Oxygen reduction reaction (*ORR* **)**

Oxygen reduction reaction (*ORR* **)**

¾slight suppression of ORR at Pt(Co), Pt(Ni) and Pt(Cu):

> ≠ *extensive literature on similar Pt-shell/Pt3M alloy catalysts (both experimental and DFT results)*

large ε_σ down-shift due to larger ligand and strain effects by **nonalloyed M** regions in the core

Further decrease of Pt-O bond strength (increase in $\Delta \rm E_{\rm O}$)but also of dissociative O₂ adsorption

Oxygen reduction reaction (*ORR* **)**

¾

 enhancement of ORR at Au(Cu), Au(Ni) and Au(Co):

-difference in ORR mechanism

-no oxides present

-extraordinary properties (increased molecular oxygen adsorption) of very small particles or very thin films of Au

Methanol oxidation reaction (*MOR* **)**

- \triangleright enhancement of MOR at Pt(Cu), Pt(Pb)
- ¾decrease at Pt(Ni), Pt(Co)
- (≠literature for alloys)

¾

¾ enhancement of MOR short termstability at Pt(Cu), Pt(Pb), Pt(Ni), Pt(Co) (∼literature for tolerance to CO poisoning)

Interplay between CO poisoning and MeOH chemisorption

Pt(Cu) : moderate $\epsilon_{\text{\tiny{d}}}$ downshift and adsorption affinity \rightarrow best performance

Towards the application of the method to practical catalysts

Impregnation

Pure Black Carbon (PB) (Barsukov and co-workers)

Pt and Au shell - bimetallic core (Pt-M, Au-M) electrocatalysts **Towards the application of the method to practical catalysts** $\overline{20}$

