ELECTROLESS DEPOSITION OF METAL COATINGS FOR ELECTROCATALYSIS OF FUEL CELL REACTIONS

Georgios Kokkinidis Aristotle University of Thessaloniki (Greece)

FUEL CELL ELECTROCATALYSIS

Improvement of the catalytic activity of Pt for fuel cell electrocatalysis.

Modification with ad-atoms Š Modes of action

- 1) The third-body mechanism
- 2) The prevention of poison formation
- 3) The bifunctional mechanism
- The modification of the electronic properties of the electrode surface.
- Increase the catalyst utilization

Dispersion of micro- and nano-structured metal particles on porous materials.

- Mostep Procedure (electrodeposition of nonprecious metal and electroless replacement by a precious metal)

ELECTROLESS DEPOSITION OF Pt ON Ti

Immersion of Ti in an aqueous 0.1 M HClO₄ solution containing $2x10^{-3}$ M K₂PtCl₆

 $Ti(bulk) + PtCl_6^{-2} \land Pt^0/Ti + Ti^{IV} + 6Cl^{-1}$

Fig. 2. TEM image and the corresponding diffraction pattern of electroless deposited Pt crystals on freshly polished Ti after immersing it in 0.1 M HClO₄ + $2x10^{-3}$ M K₂PtCl₆ solution for 60 s.

Fig. 3. XPS spectra for Pt 4f obtained from Pt/Ti samples prepared by immersing a freshly polished Ti plate in 0.1 M $HClO_4+2\times10^{-4}$ M K₂PtCl₆ solution for: (1) 5 s; (2) 10 s; (3) 60 s. A and B: original platinum peaks; A1 and B1: deconvoluted platinum peaks; A2 and B2: deconvoluted platinum oxide (PtO) peaks.

HYDROGEN EVOLUTION ON Pt/Ti ELECTRODES

Cyclic voltammogram of the Pt/Ti electrode in 0.1 M $HClO_4$ and the *I*(E) quasi-stationary polarization curve for the HER in the same solution.

Fig. 4. Quasi stationary I(E) voltammogram for the HER on Pt($t_d = 10$ s)/Ti in aqueous 0.1 M HClO₄ solution. dE/dt = 5 mV s¹.

The inset shows the cyclic voltammogram of the Pt/Ti electrode in 0.1 M HClO₄ ($v = 50 \text{ mV s}^{-1}$).

Optit Test ¹⁷ and a TFF L2VI downpases
are needed to see the picture.

Fig. 5. Tafel plots for HER on Pt/Ti and smooth Pt electrodesin aqueous 0.1 M HClO₄ solution.

```
(1) Pt (t_d = 2 s)Ti
```

- (2) Pt $(t_d = 4 \text{ s})$ Ti (2) Pt $(t_d = 4 \text{ s})$ Ti
- (3) Pt $(t_d = 10 \text{ s})$ Ti (4) Pt $(t_d = 0 \text{ s})$ Ti
- (4) Pt $(t_d = 60 \text{ s})/\text{Ti}$
- (5) Smooth Pt.

Note

The smaller the platinum particles the higher the catalytic activity is

OXYGEN REDUCTION ON Pt/Ti ELECTRODES

The next system studied was the reduction of oxygen on Ti covered by electroless-deposited Pt in 0.1 M HClO₄ aqueous solution.

Fig. 6. Averaged current–potential curves for oxygen reduction on a R/Ti rotating-disc dectrode in O₂-saturated 0.1 M HClO₄ (dE/dt = 20 mV s⁻¹). Rotation frequency f = 18.33 Hz.

- (1) $Pt(t_d = 5 s)/Ti$
- (2) $Pt(t_d = 15 \text{ s})/Ti$
- (3) $Pt(t_d = 20 \text{ s})/Ti$
- (4) $Pt(t_d = 35 s)/Ti$
- (5) $Pt(t_d = 60 \text{ s})/Ti$
- (5) Smooth Pt

GOLD SUPPORTED Pt ELECTROCATALYSTS FOR O₂ REDUCTION

Two-step procedure:

- ▶ Deposition of a less n oble metal (*i.e* Cu, Pb etc.) electrochemically
- **D**eplacement by platinum at open-circuit potential

 $2Cu^{0}/Au + PtCl_{6}^{-2} \ddot{Y} Pt^{0}/Au + 2Cu^{2+} + 6Cl^{-1}$

- The time of copper deposition was changed from 3 s to 120 s
- The displacement time with Pt was kept constant equal to 180 s.

Fig. 8. AES spectra for the system $Pt/(Cu_{60s})/Au$ at different immersion times.(A) 0 s; (B) 60 s; (C) 120 s; (D) 180 s.

QuickTime™ and a TIFF (LZW) decompressor are peeded to see this picture

Note

Even at immersion time of 180 s the Cu amount was not fully displaced by Pt

Fig. 9. AFM contact mode images of (A) bare Au and (B) Au covered by Pt deposit. $t_{Cu, dep} = 60 \text{ s}$

 $t_{\rm Cu, \ dep} = 00 \ {\rm s}$ $t_{\rm Pt, \ repl} = 180 \ {\rm s}$

- The metallic particles are almost uniformly spread on the Au substrate.
- The size of the particles is about 50 Š 100 nm in diameter and consists of agglomerated crystallites of much smaller dimensions.

Fig. 10. Cyclic voltammogram of a Pt(Cu)/Au modified electrode in oxygen-free 0.1 M HClO₄ ($dE/dt = 50 \text{ mV s}^{-1}$). $t_{\text{Cu, dep}} = 60 \text{ s}$ $t_{\text{Pt, repl}} = 180 \text{ s}$

➔ The cyclic voltammogram shows typical features for both polycrystalline gold and platinum.

Fig. 11. CurrentŠpotential curves for oxygen reduction on Pt(Cu_{xs})/Au rotating-disc electrodes in O₂-saturated 0.1 M HClO₄ (d*E*/d*t* = 20 mV s⁻¹). Rotation rate f = 1100 rpm. $t_{Cu, dep}$: (1) 3 s; (2) 10 s; (3) 40 s; (4) 60 s; (5) 120 s $t_{Pt, repl} = 180$ s

The insets show mass-transport corrected Tafel plots.

Fig. 12. CurrentŠpotential curves for oxygen reduction on Pt(Cu)/Au rotating-disc electrodes in O₂-saturated 0.1 M HClO₄ (d*E*/d*t* = 20 mV s⁻¹). Rotation frequency: f = (1) 8.33; (2) 12.5; (3) 18.33; (4) 25; (5) 33.33; (6) 50 Hz. $t_{Cu, dep} = 60$ s $t_{Pt, repl} = 180$ s The inset shows plot of j_L vs. $\omega^{1/2}$. The catalytic activity of the Pt(Cu)/Au electrode for oxygen reduction depends on the amount of copper deposited and exchanged by Pt.

The half-wave potential increases as the amount of copper is increased, until it reaches a maximum value for 60 s of copper deposition.

- A remarkable hysteresis was observed between the forward (negative) and the backward (positive) potential scan.
 Reduced platinum clusters exhibit higher catalytic activity than oxidized platinum clusters.
- The catalytic activity of reduced Pt(Cu)/Au surface is significantly higher than the activity of reduced smooth polycrystalline Pt surface.