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1) High harmonics generated by relativistic Thomson
scattering at the interaction between ultraintense e.m.
linear polarized field (a>10) and electrons whose initial

velocities are small

First stage: solution of the relativistic equations of motion

%(7/ﬂx): ~aall-f; Jeosn x4

r<<R

d
a(yﬁz )=-awp, cosn
EL = EM COS?] BL = BI\/I COSn

y=(1—ﬂf—ﬁ§)‘$ a=fou

by =vylc B,=V,IC n=awt—Kk z

Resul: By B By JS,

Remarkable property of the solutions: are functions only of n




Second stage : calculation of the field generated by the motion of the electron
with the Lienard Wiechert relation.
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The main property : E periodic in n




Third stage: calculations of the harmonics of the field and of the
spectrum of the intensity of the Thomson scattered beam.
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Discrete spectrum for a=15 and 6 = 0.1874 radians
- Angular distribution in the polarization plane for a=15
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Results in agreement to the experiment reported in:
Phys. Rev. Lett. 91, 195001, 2008, Laboratoire d’Optique Appliquee, ENSTA



2) Calculation of the energies of hard X rays generated by
the interaction between relativistic electrons and very
Intense laser beams.

Experimental data in this moment for interactions between:
- Laser beam for intensities 1016-1018W/cm?
- Relativistic electrons of energies 20-100 MeV

Generation of hard X rays of energies (20-200 keV)

As it is shown in the book of Heitler (The Quantum Theory of
Radiation, Clarendon, Oxford, 1960), it is more convenient to made
the analysis in the inertial system in which the initial velocity of the
electrons is zero.

There are two geometries of interaction, the first, when angle between
the wave vector and the electron velocity is 1809, and the second,
when this angle is 900,
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First stage: calculation of the laser field parameters in the system
S.” We limit at the case of the 180° geometry
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Second stage: solution of the equations of the electron motion in
the system S’
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Remarkable property of the solution: it is function only of n’

Result: B B B B as periodic functions of 1’



Third stage: calculation of the parameters of the field generated in the S’
system
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The experimental data from literature correspond to a’=a<1. In this case the
first harmonic is dominant. We limit the analysis at the first harmonic, when
0=m, in the case of the 180° geometry.
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The angle of divergence of X-rays beam in the S’ system: A0'=n/4



Fourth stage: calculation of the parameters of the field generated in the
laboratory system
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Final relations:

180° geometry:
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Table 1.

Comparison between theoretical and experimental values of the X-rays

photon energies and wavelengths, denoted, respectively, by Wxi, Ax 1 and Wxioop,

)".Yle.r'p'

Characteristics  Case 1 Case 2 Case 3 Case 4
Geometry 180° 180° 1807 an°

W, [MeV] 60 55 57 32

Yo 117.4 107.6 111.5 62.62

|Bo | 0.99996 0.09996 0.09006 0.99087
Wr[J] 0.2 0.180 0.180 0.2

AL [um] 10.64 0.800 0.800 0.800
r[pm] 32 35 32 50

71 [s] 180 » 1012 54 % 1071% 54 % 10-15 170 x 1018
I [W/m?] 3.454 % 10%7 8661 % 1027 8.661 = 1027 1.498 x 102"
Ep[V/m] 1.613 = 1010 8.078 » 101 8.078 » 10'  3.3506 x 101!
wr[s™] 1770 x 1014 2.355 x 10"  2.355 x 10’  2.355 x 103
a 0.05346 0.2012 0.2012 0.08371

Wi [keV] T1.8 77.1

W teap[keV] 73.1 8.5

Ax1[A] 1.9 1.02
Ax1expl|A] 1.8 1
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FIRST RESULT — GRANT CNCSIS

We consider the Schrodinger equation written for a closed system composed by
electromagnetic linear polarized field and an electron, when the interaction term
and the energy of the e. m. field enter in their classical form

{i(— inv +eAf +E,, }1}0 - EY, where —_j[ ( ) = (vxAf ]dv
2m
We consider also the Hamilton-Jacobi equation written for the same system
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We proved the following property:
If the dipol approximation is fulfilled and the Hamilton-Jacobi equation has the solution

c = S,, then the Schrodinger equation is verified by the function
o
This property is published in IEEE J. Quantum Electronics, 43, 1183, 2007

This property Is proved without using the semiclassical (WKB) approximation
or the approximation of the geometrical optics

CONCLUSION There is a direct connection between the quantum and classical
functions, ¥, and S, which correspond to the same value of the total energy.
A similar connection is valid in the case of stationary systems, as follows.



SECOND RESULT.

We consider a stationary bound system whose behavior is described by the
Schrodinger equation. The total energy E is constant and negative and the potential
energy U does not depend explicitly on time.

For this system the Schrddinger equation is rigorously equivalent to the wave
equation.

We proved the following properties:

1) The characteristic surfaces of the wave equation, denoted by X, and their
normals, denoted by C, are solutions of the Hamilton-Jacobi equation written for the
same system.

2) The constants of motion corresponding to C curves, including the total energy E,
are identical to the eigenvalues of the Schrodinger equation.

It results again direct connection between guantum and classical functions,
¥, and S, (corresponding to the C curve), which correspond to the same
value of the total energy. The similitude between the two results is almost

perfect.

The idea of our approach is to use the properties of the C curves, to calculate the
properties of the system.

Calculations based on the properties of the C curves are presented in the following
papers:
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Table 1. Normalized values of the total energy caleulated in this paper and in literature, with the aid of Hartree-Fock methods,

as compared to experimental values. The values are given in Rydbergs. The corresponing values of sg;. and sy3. are given

Takle 2.

State

E (this paper)

E {literature)

—exp

He 1s”

-5.83562

-5.7233402 [20]
5723350 [22]
_5.7233508 [23]
-5.7233600 [25]

-5.7233600 [27]

_5.806921 [15]

Li 1s%2s

-14.9559

[14.8654514 [29]
-14.8654538 [25]
-14.8654516 [27]
-14.8654538 [26]

[14.8654475 [28§]

~14.956336 [15]

Lil1s?2p

-14.5172

~14.730136 [19]
~14.760174 [21]

~14.760382 [24]

~14.82147 [16]

Be 157252

-29.2517

-20.144736 [20]
-20.146044 [22]
-29.146042 [23]

-29.146042 [27]

-29.14603376 [28)

-29.337659 [15]




In the Chapter 4, Section 7, entitled "The critic of our preliminary interpretation
of the quantum theory in terms of hidden variables", of his last book
“Wholeness and the Implicate Order,” David Bohm showed that it is necessary
to find a solution where the quantum potential does not appeatr.

The anthor has introduced in a series of papers a very interest-
ing way of relating quantum mechanics to classical mechanics avoiding
the pitfalls of Bohm-type potentials. In the present paper submitted for
review, the author presents a number of caleulations for atoms and com-
pares the energy obtained semiclassically with those obtained by strict
quantum mechanical methods.






