
Calculation of the energies of hard 
X-rays generated by the interaction 

between relativistic electrons and very 
intense laser beams

Alexandru Popa
National Institute of Laser, Plasma and 

Radiation Physics, Laser Department, P.O. 
Box MG-36, Bucharest, Romania 077125 



1) The calculation method in the case of the relativistic Thomson scattering; 
interaction between ultraintense laser beams (I>1019W/cm2 and a>10) and 
electrons whose initial velocities are small. 
- A. Popa, “Accurate calculation of high harmonics generated by relativistic Thomson 
scattering,” J. Phys. B: At. Mol. Opt. Phys., 41, 015601, 2008. 

2) Calculation of the energies of hard X rays generated by the interaction 
between relativistic electrons (20-100 MeV) and very intense laser beams.

3) A brief presentation of the final results of the GRANT CNCSIS entitled “NEW 
CONNECTION BETWEEN QUANTUM AND CLASSICAL EQUATIONS 
WITH APPLICATIONS TO THE MODELING OF THE STATIONARY 
STATES AND TO THE INTERACTIONS BETWEEN ULTRAINTENSE 
ELECTROMAGNETIC FIELDS AND ATOMS.”
- A. Popa, J. Phys. A: Mathematical and General, 36, 7569, 2003.
- A. Popa, J. Of Chemical Physics, 122, 244701, 2005.
- A. Popa, IEEE J. Quantum Elect., 40, 1519, 2004.
- A. Popa, IEEE J. Quantum Elect., 43, 1183, 2007.
- A. Popa, European Physical Journal D, 49, 2008, in print.



1) High harmonics generated by relativistic Thomson 
scattering at the interaction between ultraintense e.m. 
linear polarized field (a>10) and electrons whose initial 
velocities are small 

First stage:  solution of the relativistic equations of motion
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Remarkable property of the solutions: are functions only of η



Second stage : calculation of the field generated by the motion of the electron 
with the Lienard Wiechert relation.  
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The main property :   E periodic in η



Third stage: calculations of the harmonics of the field and of the 
spectrum of the intensity of the Thomson scattered beam.
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Discrete spectrum for a=15 and θ = 0.1874 radians
- Angular distribution in the polarization plane for a=15

Results in agreement to the experiment reported in: 
Phys. Rev. Lett. 91, 195001, 2008, Laboratoire d’Optique Appliquee, ENSTA 
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2) Calculation of the energies of hard X rays generated by 
the interaction between relativistic electrons and very 
intense laser beams.

Experimental data in this moment for interactions between: 
- Laser beam for intensities 1016-1018W/cm2

- Relativistic electrons of energies 20-100 MeV   

Generation of hard X rays of energies (20-200 keV)

As it is shown in the book of Heitler (The Quantum Theory of 
Radiation, Clarendon, Oxford, 1960), it is more convenient to made 
the analysis in the inertial system in which the initial velocity of the 
electrons is zero.

There are two geometries of interaction, the first, when angle between 
the wave vector and the electron velocity is 1800, and the second,  
when  this angle is 900.
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First stage:  calculation of the laser field parameters in the system 
S.’ We limit at the case of the 1800 geometry
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Second stage:  solution of the equations of the electron motion in 
the system S’
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Remarkable property of the solution: it is function only of η’

as periodic functions of η’



Third stage:  calculation of the parameters of the field generated in the S’
system 
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The experimental data from literature correspond to a’=a<1. In this case the 
first harmonic is dominant. We limit the analysis at the first harmonic, when 
θ=π, in the case of the 1800 geometry. 
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The angle of divergence of X-rays beam in the S’ system:  Δθ’=π/4
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Fourth stage:  calculation of the parameters of the field generated in the 
laboratory system 
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Final relations:

1800 geometry: 900 geometry:
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FIRST RESULT – GRANT CNCSIS 

We consider the Schrodinger equation written for a closed system composed by 
electromagnetic linear polarized field and an electron, when the interaction term 
and the energy of the e. m. field enter in their classical form
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where

We consider also the Hamilton-Jacobi equation written for the same system

We proved the following property:
If the dipol approximation is fulfilled and the Hamilton-Jacobi equation has the solution
σ = S0, then the Schrodinger equation is verified by the function 
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This property is proved without using the semiclassical (WKB) approximation 
or the approximation of the geometrical optics

This property is published in IEEE J. Quantum Electronics, 43, 1183, 2007

CONCLUSION There is a direct connection between the quantum and classical
functions, Ψ0 and S0 which correspond to the same value of the total energy.
A similar connection is valid in the case of stationary systems, as follows.



SECOND RESULT. 
We consider a stationary bound system whose behavior is described by the 
Schrödinger equation. The total energy E is constant and negative and the potential 
energy U does not depend explicitly on time.
For this system the Schrödinger equation is rigorously equivalent to the wave 
equation.
We proved the following properties:
1) The characteristic surfaces of the wave equation, denoted by Σ, and their 
normals, denoted by C, are solutions of the Hamilton-Jacobi equation written for the 
same system.
2) The constants of motion corresponding to C curves, including the total energy E, 
are identical to the eigenvalues of the Schrodinger equation. 

It results again direct connection between quantum and classical functions, 
Ψ0 and S0 (corresponding to the C curve), which correspond to the same 
value of the total energy. The similitude between the two results is almost 
perfect.

The idea of our approach is to use the properties of the C curves, to calculate the 
properties of the system.
Calculations based on the properties of the C curves are presented in the following 
papers:
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In the Chapter 4, Section 7, entitled "The critic of our preliminary interpretation
of the quantum theory in terms of hidden variables", of his last book 
“Wholeness and the Implicate Order,” David Bohm showed that it is necessary 
to find a solution where the quantum potential does not appear. 




