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LOpt:ical manipulation of quantum phenomena: numerical and theoretical approaches
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Scheme 1.

Figure: SELECTIVE dissociation of chemical bonds (laser induced).
Other examples: CF3 or CH; from CH3COCFs; ...
(R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709-713, 2001).
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Scheme 2.

Figure: Selective dissociation AND CREATION of chemical bonds (laser
induced).

Other examples: CF3 or CH; from CH3COCFs; ...

(R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709-713, 2001).
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Enhancement

Figure: Experimental High Harmonic Generation (argon gas) obtain high

frequency lasers from lower frequencies input pulses w — nw (electron ionization that come back to the nuclear
core) (R. Bartels et al. Nature, 406, 164, 2000).



Quantum chemistry and control: theoretical, experimental and numerical challeges

— Optical manipulation of quantum phenomena: numerical and theoretical approaches

Flgu Ie€. Studying the excited states of proteins. F. Courvoisier et al., App.Phys.Lett.
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Figure: thunder control : experimental setting ; J. Kasparian Science,
301, 61 — 64 team of J.P.Wolf @ Lyon / Geneve , ...
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FIgU F€: thunder control : (B) random discharges ; (C) guided by a laser filament ; J. Kasparian Science, 301,
61 — 64 team of J.P.Wolf @ Lyon / Geneve , ...
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FlgU €. LIDAR = atmosphere detection; the pulse is tailored for an optimal reconstruction at the target :
20km = OK ! ; J. Kasparian Science, 301, 61 — 64
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FIgU I€. Creation of a white light of high intensity and spectral width ; J. Kasparian Science, 301, 61 — 64
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Other applications

EMERGENT technology

creation of particular molecular states

long term: logical gates for quantum computers

fast “switch” in semiconductors
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LBackground on controllability criteria

Single quantum system, bilinear control

Time dependent Schrodinger equation

{ i%\ll(x, t) = (Ho — e(t)u(x))V(x, t) )
V(x,t=0)=Wpy(x)

Ex.: Hyp = —A + V(x), unbounded domain
Evolution on the unit sphere: ||W(t)|;2 =1, Vt > 0.
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Controllability

A system is controllable if for two arbitrary points W1 and V5 on
the unit sphere (or other ensemble of admissible states) it can be
steered from Wq to W5 with an admissible control.

Norm conservation : controllability is equivalent, up to a phase, to
say that the projection to a target is = 1.
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L Background on controllability criteria

Galerkin discretization of the Time Dependent Schrodinger
equation

i;)t\ll(x, £) = (Ho — e(£)1)V(x, 1)

e basis functions {¢;;i =1,..., N}, e.g. the eigenfunctions of the
Ho: Hovk = extk

e wavefunction written as ¥ = ZLV:1 kW

e We will still denote by Hyp and p the matrices (N x N) associated
to the operators Ho and p @ How = (Y| Holtr), pr = (il ple),



Quantum chemistry and control: theoretical, experimental and numerical challeges
L Controllability

LBackground on controllability criteria

Lie algebra approaches

To assess controllability of

igt\li(x, t) = (Ho — e(t)p)¥(x, t)

construct the “dynamic” Lie algebra L = Lie(—iHo, —ip):

VM, My € L, Yo, 3 € R aM; + M, € L
VM, My € L, [Ml, M2] = MM, — MMy € L

Theorem If L = u(N) or L = su(N) (the (null-traced)
skew-hermitian matrices) then the system is controllable.

e (Albertini & D'Alessandro 2001) Controllability also true for L
isomorphic to sp(N/2) (unicity).

sp(N/2) = {M: M* + M =0, M*J + JM = 0} where J is a matrix

0 Insp

unitary equivalent to and Iy > is the identity matrix of

dimension N /2
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Beyond bilinear setting: questions

e what about the system

DU t) = [Ho+ el + (ePpa] W0 (3)

How is the controllability changed due to the constraint that the
second control be the square of the first 7
e same for (rigid rotor interacting with linearly polarized pulse)

iaatw(xv t) = [HO + e(t)pa + 6(1.')2,U2 + E(t)?’,u,3] V(x, t). (4)

e same for (rigid rotor interacting with two-color linearly polarized
pulse)

iaatw(xv t) = [HO + (El(t)2 + E2(t)2),u,1 + El(t)2 . Ez(t),UQ] W(X, t).
(5)
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Beyond bilinear setting

Theorem (G.T. 2005)

Consider the system

.0

/a\lf(x7 t) = [Ho + Fi(e(t))u1 + ... + Fr(e(t)) ] W(x, t). (6)
Suppose that the family {1, F1, ..., F. } is linearly independent and
denote by Liny ip,,....in, the Lie algebra spanned by the matrices
iHo,ip1,....,ine. Then a sufficient condition for wave-function
controllability of the equation (6) is

LiHo,f/J,l,...,iML = SU(N) or U(N) (7)

Remark : more precise results available (cf paper)
Remark : €(t) € R" (arbitrary n).
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Beyond bilinear setting: applications

e By the Thm. since 1, ¢, €? are independent the system

i%\li(x, £) = [Ho+ (B + (] W(x, 1) (8)

is controllable under the same circumstances as

.0

i5 Vxt) = [Ho + ex(t)u + ea(t)u2] W(x; t). (9)
with €1 and ¢, independent controls. The fact that €2 in w2 is both

positive and constraint by € in u; does not play any role for
controllability.
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Beyond bilinear setting: applications

e same for

i%lll(x, t) = [Ho + e(t)u1 + €(t)’pa + e(t)?us] W(x, t). (10)

e same for

iaat"’(xa t) = [Ho + (Eo(t)” + E2(t)*)ps + E(t)” - Eo(t)p2] W(x, 1).
(11)

Remark Fj need not be smooth ! For instance F(€) can be

M - sgn(e).
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Outline

Numerical algorithms for nonlinear laser shaping

m Background on monotonically convergent algorithms in the
bilinear case
Monotonic algorithms for non-linear cases
Monotonic algorithms for non-linear cases: motivation
Lyapounov (tracking) algorithms
Interpretation of monotonic and tracking algorithms
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wolBiv }|

Figure: Polarization-shaped pulse, optimized for the ionization of
potassium molecules. Ellipses represent the amplitude of the electric
field, colours indicate different frequencies; Yaron Silberberg, Nature 430,

624-625 (2004)
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LBaci(ground on monotonically convergent algorithms in the bilinear case

Optimal Control formulation

Evolution equation:

i%\lf(x, t) = (Ho — e(t)p)V(x, t) (12)

e optimal control: quality of a control expressed through a
objective functional to optimize (maximize)

J(e) = (W(T)|OW(T)) —a [ €
Examples (O = projection to state wtarget) Definition
< f|O|g >=< f, Og >.
J(€) = 2R(Vrarget[Y(+, T)) — fOT a(t)e?(t)dt
J(€) =2 = [Wtarger — (-, T2 = fy a(t)e(e)dt
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LBackground on monotonically convergent algorithms in the bilinear case

Standard optimization procedure

e construction of an extended objective functional i.e., add
constraints through an adjoint state x(x, t)

;
J(e) = (V(T)|O|W(T)) — a/o e2(t)dt

_2Re/(;T <X(x, t), {aar +i-[Ho — e(t)u]} V(x, t)>

Partial derivatives

0J(e)
Oe€

= —2ae(t) — 2Im (x|u|V¥) (t)
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LBackground on monotonically convergent algorithms in the bilinear case

Euler-Lagrange critical point equation

ae(t) = —Im (x|u[V) (t)
e Chose a numerical algorithm to update the field €(t), e.g.,
dJ(eM)
de

slow convergence = complicated objective functional surface
Recent works by Alfio Borzi: functional surface seems to be very
flat with many almost optimal regions.

=" (13)
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LBackground on monotonically convergent algorithms in the bilinear case

Compute the optimal field ¢(t) (Krotov cf. Tannor et. al 1992):

iZWK(x,t) = (Ho — e¥(t)p) V¥ (x, t)
{ et = 0)— o) (14)

(1) = — (v ) (15)
2K, 1) = (Ho — () (x, )
{ X (>><<, t=T)= cgwk(x, TL)L ! (16)

In practice solve the equations (14)-(15) by propagating the
non-linear equation

{ iTWk(x,t) = (Ho + LIm (%Y u|WK) (£) )Wk (x, t) (17)

)
WK(x, t = 0) = Wo(x)
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L Background on monotonically convergent algorithms in the bilinear case

Zhu & Rabitz formulation (1998)

THEOREM (W. Zhu and H. Rabitz. J. Chem. Phys., 109:385-391,
1998.) Suppose O is a semi-positive definite (auto-adjoint)
operator. Then for any k > 0: J(ekT1) > J(€¥), i.e. there is an
improvement in the functional at any iteration.
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LBackground on monotonically convergent algorithms in the bilinear case

A general class of algorithms (Y.Maday & G.T. 2002)

F(E) — SIm{ vk )

Particular cases: Zhu & Rabitz for § = 1 and n = 1; Krotov
(Tannor et al. 1992) for 6 =1 and n = 0.

(18)
(19)
(20)

(21)
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LBackground on monotonically convergent algorithms in the bilinear case

THEOREM If O is an hermitian observable semi-positive definite
then, for any 1,6 € [0,2] J(ekF1) > J(F).

J(ek+1) _ J(Ek) —
(WrH(T) — WA ONHT(T) —wH(T)) +
2

a/T(z _ 1)(6k+1 _ gk)Z + (7 _ 1)(€k _ 6k)2
o 0 n
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LBackground on monotonically convergent algorithms in the bilinear case
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Figure: Successful quantum control for the localization observable.



Quantum chemistry and control: theoretical, experimental and numerical challeges

L Numerical algorithms for nonlinear laser shaping

LBackground on monotonically convergent algorithms in the bilinear case

Optimized objective functional and expectation value

5 L
4 E
3 .
2y <y Moy (M> —— 7
(o0)
1} ¥
<" (Mo (M> —
0 e 1 1 L] 1 1 1 1 1 L L L L

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Iteration Steps

Figure: Typical monotonic convergence; two regions are obtained: initial
finding of a descent direction (exploration) followed by the optimization
step (exploitation).



Quantum chemistry and control: theoretical, experimental and numerical challeges
LNumerical algorithms for nonlinear laser shaping

LMonotonic algorithms for non-linear cases

Nonlinear situations: Euler-Lagrange

Quaderatic intensity and quadratic penalization in e:
J(e) = (W(T)OIW(T)) —a Jy (t)dt
Critical point equations :

{ i2W(x,t) = (Ho — (t)u)¥(x, t)
V(x,t=0)= Vp(x)

{ i%x(x, t) = (Ho — e(t)?u)x(x, t)
X(x,t=T)=0V¥(x, T)

ae(t) = —e(t)Im (x|p|V) (t)

Remark: we obtain no useful formula to iterate on ek — ¢k+1 11
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LMcmotonic algorithms for non-linear cases: motivation

Nonlinear situations: Euler-Lagrange

3rd order intensity and quadratlc penallzation in €

J(e) = (W(T)OIW(T)) —a f" &

Critical point equations :

ae(t) = —e*(t)Im (x|u| V) (t)

Remark: formula €(t) = — %= may be unstable
Im(xlul‘“)(t)

Remark: we obtain no monotonicity if we just plug the formula to

iterate on ek — kt1 11
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L Monotonic algorithms for non-linear cases: motivation

Nonlinear situations: J. Salomon, C. Dion, G.T. for
quadratic control

Let us consider H(t) = BJ? — uoE(t) 4+ p1E%(t) and Wk, x¥ the
direct and respectivelly adjoint states.
Then the update formula

C Im (WK XK ) (1)
2Im (VK| [x 1) (t) —

E(t) = (22)

gives a monotonic algorithm (after computations).
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LMonotonic algorithms for non-linear cases: motivation

Nonlinear situations: polynomial case of Ohtsuki and
Nagakami

Let us consider H(t) = Zf\'n/I:O HmE™(t) and Wk, ..., Wko ko
XX direct and respectively adjoint states with the followmg rules
(for situation M = 2 i.e. H(t) = Ho + E(t)Hy + E(t)?*Ha):

- XX is propagated with H(t) = Ho + E1+E H + Ef-Ef'H,
and Ef is from the critical point formula Wlth E2 on the right
side

- Wk is propagated with H(t) = Hp + -2 B +E H1 + Ef- E2k*1H2
and Elk is from the critical point formula W|th E2k ! on the right
side
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L Monotonic algorithms for non-linear cases: motivation

Nonlinear situations: polynomial case of Ohtsuki and
Nagakami

k - . . E2k+E1k =k k
- X5 is propagated with H(t) = Ho + =5 Hi + E; - E{'Ho where
EX is from the critical point formula with Ef on the right side
k k
- WK is propagated with H(t) = Ho + EI;E2 Hy + Ef - EXH, and
E2k is from the critical point formula with E{( on the right side

Then the resulting algorithm is monotonic algorithm (after
computations :-) ).
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LMonotonic algorithms for non-linear cases: motivation

Nonlinear situations: polynomial case with different
functional : M. Lapert, R. Tehini, G.T., D. Sugny

Let us consider H(t) = Z:\nﬂzo HmE™(t) and introduce in the cost

functional the term fOT E2"(t) instead of the classic (n = 1) term.
Set the following:

EX(t) = ...(equation involving EX(t), EkK=1(t), x*~! and the
current WX(t)) (cf. paper, eq 24) .

Then the resulting algorithm is monotonic algorithm (after
computations :-) ).

Remark: only one direct and adjoint iteration, but at the price of
modifying the cost functional.
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LMcmotonic algorithms for non-linear cases: motivation

Nonlinear situations: construction and insights

Let us consider H(t) = H(e(t)) and compute J(€¢') — J(¢) for
J(e) = (W(T), Wtarget) OZIOT (t)dt

.
J(e) = J(e) = —/0 (O [H(E (1)) = H(e(t))]W) +ale' (1) —e(t)?)dt

(23)
It can be proved that the term is (under suitable conditions) of the
form J(€') =— fo (€'(t) — €(t))dt thus in order to

be monotonic |t is enough to choose A€, e) = 0(€(t) — €(t)).
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LLyapounov (tracking) algorithms

Convergence of Lyapunov algorithms (joint works with M.
Mirrahimi, P. Rouchon)

Let us consider V(t) = ||1(t) — @btarget(t)Hz With Yarger(t) a
stationary state i.e. i%@btarget(x, t) = HoWtarget(x, t)

dav
dt
e.g. €(t) = —alm{u, Yrarger) (a > 0) LY will be negative thus the
Lyapunov function V decreases.

Remark: we can characterize the limit points by computing all
derivatives of V' which have the form Im([Ho...[Ho, u]...]J¥, &).

26(t) lm<,U/‘7Z]7 d}target> (24)
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LInterpretation of monotonic and tracking algorithms

Interpretation of monotonic and tracking algorithms

J(e, ), X) = 2§R<T/}target‘¢( T)) — foT (t)62(t)dt
-2 jo t)|0r + iH — pe(t)|(., t))dt
EuIer—Lagrange equations:

o(x,8) = (H = (Ou()b(x. 1
¢(Xa t= 0) = Ql}O(X)

Vyd —

i5ex(x,t) = (H = e(t)p(x))x(x, 1)
Vyd —

X(Xv t= T) = wtarget(x)
Ve = a(t)e(t) = =S < x(., 1)|pl(., t) >
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LInterpretation of monotonic and tracking algorithms

Interpretation of monotonic and tracking algorithms

At time t, “best guess for a solution” is € = € - X[0,¢] + €ref * X[t,T]-

Forward objective functional (easily to compute at time “t"):
i%¢ref(xy t) = (H - Eref(t)ﬂ) ¢ref(xa t), 2;Z)ref(T) = wtarget-

Jrwd(€, t €rer) = [ a(t)dt+ [ aeer®()dt + [[trer (t) — (2)]|.

Theorem (G.T., Proc. 44th IEEE CDC-ECC Sevilla, Spain, Dec. 2005. ; G. T., J. Salomon, J. Chem. Phys.
124:074102 (2006).): J(E) = wad(e, t; Eref).

Decisions on the optimality of some control can be made locally
e.g. by monotonic algorithms that ensure Jg, (€, t; €rer) is
decreasing locally in time.
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LNumerical algorithms for nonlinear laser shaping

LInterpretation of monotonic and tracking algorithms

Interpretation of monotonic and tracking algorithms

Evolving state 4 approaches monotonically reference ¥ .. No optimization during the backward propagation
g pp! y ref P g propag:
(i.e. ghtl = ek+1), imply ||1,/er¢1 — ket || = cst. The shrinking distance between the two trajectories ensures

the progression of the quality functional toward optimal values. The optimal couple of trajectories will be a tube

whose nonzero width is related to the driving laser field fluence penalty «.

Ytarget

0 Time of control



Quantum chemistry and control: theoretical, experimental and numerical challeges

L Perspectives and current work

Outline

Perspectives and current work



Quantum chemistry and control: theoretical, experimental and numerical challeges

L Perspectives and current work

Robustness to noise (joint work with Adrian Zalinescu, lasi)

SDE ("random laser” approach)

idV(x, t) = (Ho — e(t)p)V(x, t)dt — opV(x, t)dW; (25)

Goal: maximize the functional (OCT)
T
J(e) == E (W (T)|0| W (T)) —a/ €2 (1) dt.
0

The associated backward SDE is

idx (x,t) = [(Ho — e (t) ) x (x, t) — opZ (x, t)] dt — iZ (x, t) dW,
X(x, T)=0V¥(x,T). (26)

The term Z makes x adapted with respect to the filtration
generated by W;.
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L Perspectives and current work

Robustness to noise

idWk (x, t) = (HO ) u) WK (x, t) dt — opW* (x, t) dW;
Wk (x,0) = Vo (x);
e 5 .
() = (1= )8 (1) = ZEIm (X7l v¥) (9);
idx" (x, t) = [(Ho _ (1) u) X (x, t) — ouZ* (x, t)} dt — iz (x,t
Xk (x,T)= Ovk (x,T)
24 () = (L= m) e (8) = ZEIm (x* |u WX ().

Theorem (G.T. & A. Zalinescu 08)

The algorithm is monotonic i.e. J(e"1) > J(e™).

Numerical problem: computation of the conditionalexpectation to
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L Perspectives and current work

Convergence of the algorithms (joint work with Catalin
Lefter, lasi

e Question : for H = Hg + ept + €?a does a Lyapunov type control
converges, and to what ?

e this is a follow-up of a work with Mazyar Mirrahimi for the linear
case (Lyapounov formulation), but same arguments fail (despite
the fact that controllability is the same !);
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