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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709–713,
2001
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: SELECTIVE dissociation of chemical bonds (laser induced).
Other examples: CF3 or CH3 from CH3COCF3 ...
(R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709–713, 2001).
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: Selective dissociation AND CREATION of chemical bonds (laser
induced).
Other examples: CF3 or CH3 from CH3COCF3 ...
(R. J. Levis, G.M. Menkir, and H. Rabitz. Science, 292:709–713, 2001).
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: Experimental High Harmonic Generation (argon gas) obtain high
frequency lasers from lower frequencies input pulses ω → nω (electron ionization that come back to the nuclear
core) (R. Bartels et al. Nature, 406, 164, 2000).
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: Studying the excited states of proteins. F. Courvoisier et al., App.Phys.Lett.
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: thunder control : experimental setting ; J. Kasparian Science,
301, 61 – 64 team of J.P.Wolf @ Lyon / Geneve , ...
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: thunder control : (B) random discharges ; (C) guided by a laser filament ; J. Kasparian Science, 301,
61 – 64 team of J.P.Wolf @ Lyon / Geneve , ...
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: LIDAR = atmosphere detection; the pulse is tailored for an optimal reconstruction at the target :
20km = OK ! ; J. Kasparian Science, 301, 61 – 64
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Figure: Creation of a white light of high intensity and spectral width ; J. Kasparian Science, 301, 61 – 64
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Optical manipulation of quantum phenomena: numerical and theoretical approaches

Other applications

• EMERGENT technology

• creation of particular molecular states

• long term: logical gates for quantum computers

• fast “switch” in semiconductors

• ...
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Controllability

Background on controllability criteria

Single quantum system, bilinear control

Time dependent Schrödinger equation{
i ∂∂t Ψ(x , t) = H0Ψ(x , t)
Ψ(x , t = 0) = Ψ0(x).

(1)

Add external BILINEAR interaction (e.g. laser){
i ∂∂t Ψ(x , t) = (H0 − ε(t)µ(x))Ψ(x , t)
Ψ(x , t = 0) = Ψ0(x)

(2)

Ex.: H0 = −∆ + V (x), unbounded domain
Evolution on the unit sphere: ‖Ψ(t)‖L2 = 1, ∀t ≥ 0.
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Controllability

Background on controllability criteria

Controllability

A system is controllable if for two arbitrary points Ψ1 and Ψ2 on
the unit sphere (or other ensemble of admissible states) it can be
steered from Ψ1 to Ψ2 with an admissible control.

Norm conservation : controllability is equivalent, up to a phase, to
say that the projection to a target is = 1.
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Controllability

Background on controllability criteria

Galerkin discretization of the Time Dependent Schrödinger
equation

i
∂

∂t
Ψ(x , t) = (H0 − ε(t)µ)Ψ(x , t)

• basis functions {ψi ; i = 1, ...,N}, e.g. the eigenfunctions of the
H0: H0ψk = ekψk

• wavefunction written as Ψ =
∑N

k=1 ckψk

• We will still denote by H0 and µ the matrices (N ×N) associated
to the operators H0 and µ : H0kl = 〈ψk |H0|ψl〉, µkl = 〈ψk |µ|ψl〉,
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Controllability

Background on controllability criteria

Lie algebra approaches

To assess controllability of

i
∂

∂t
Ψ(x , t) = (H0 − ε(t)µ)Ψ(x , t)

construct the “dynamic” Lie algebra L = Lie(−iH0,−iµ):{
∀M1,M2 ∈ L, ∀α, β ∈ IR : αM1 + βM2 ∈ L
∀M1,M2 ∈ L, [M1,M2] = M1M2 −M2M1 ∈ L

Theorem If L = u(N) or L = su(N) (the (null-traced)
skew-hermitian matrices) then the system is controllable.
• (Albertini & D’Alessandro 2001) Controllability also true for L
isomorphic to sp(N/2) (unicity).
sp(N/2) = {M : M∗ + M = 0,M tJ + JM = 0} where J is a matrix

unitary equivalent to

(
0 IN/2

−IN/2 0

)
and IN/2 is the identity matrix of

dimension N/2
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Controllability

Beyond bilinear setting

Beyond bilinear setting: questions

• what about the system

i
∂

∂t
Ψ(x , t) =

[
H0 + ε(t)µ1 + ε(t)2µ2

]
Ψ(x , t). (3)

How is the controllability changed due to the constraint that the
second control be the square of the first ?
• same for (rigid rotor interacting with linearly polarized pulse)

i
∂

∂t
Ψ(x , t) =

[
H0 + ε(t)µ1 + ε(t)2µ2 + ε(t)3µ3

]
Ψ(x , t). (4)

• same for (rigid rotor interacting with two-color linearly polarized
pulse)

i
∂

∂t
Ψ(x , t) =

[
H0 + (E1(t)

2 + E2(t)
2)µ1 + E1(t)

2 · E2(t)µ2

]
Ψ(x , t).

(5)
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Controllability

Beyond bilinear setting

Beyond bilinear setting

Theorem (G.T. 2005)

Consider the system

i
∂

∂t
Ψ(x , t) = [H0 + F1(ε(t))µ1 + ...+ FL(ε(t))µL] Ψ(x , t). (6)

Suppose that the family {1,F1, ...,FL} is linearly independent and
denote by LiH0,iµ1,...,iµL

the Lie algebra spanned by the matrices
iH0,iµ1,...,iµL. Then a sufficient condition for wave-function
controllability of the equation (6) is

LiH0,iµ1,...,iµL
= su(N) or u(N). (7)

Remark : more precise results available (cf paper)
Remark : ε(t) ∈ Rn (arbitrary n).
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Controllability

Beyond bilinear setting

Beyond bilinear setting: applications

• By the Thm. since 1, ε, ε2 are independent the system

i
∂

∂t
Ψ(x , t) =

[
H0 + ε(t)µ1 + ε2(t)µ2

]
Ψ(x , t). (8)

is controllable under the same circumstances as

i
∂

∂t
Ψ(x , t) = [H0 + ε1(t)µ1 + ε2(t)µ2] Ψ(x , t). (9)

with ε1 and ε2 independent controls. The fact that ε2 in µ2 is both
positive and constraint by ε in µ1 does not play any role for
controllability.
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Controllability

Beyond bilinear setting

Beyond bilinear setting: applications

• same for

i
∂

∂t
Ψ(x , t) =

[
H0 + ε(t)µ1 + ε(t)2µ2 + ε(t)3µ3

]
Ψ(x , t). (10)

• same for

i
∂

∂t
Ψ(x , t) =

[
H0 + (E1(t)

2 + E2(t)
2)µ1 + E1(t)

2 · E2(t)µ2

]
Ψ(x , t).

(11)
Remark Fk need not be smooth ! For instance F (ε) can be
M · sgn(ε).
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Numerical algorithms for nonlinear laser shaping

Figure: Polarization-shaped pulse, optimized for the ionization of
potassium molecules. Ellipses represent the amplitude of the electric
field, colours indicate different frequencies; Yaron Silberberg, Nature 430,
624-625 (2004)
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

Optimal Control formulation

Evolution equation:

i
∂

∂t
Ψ(x , t) = (H0 − ε(t)µ)Ψ(x , t) (12)

• optimal control: quality of a control expressed through a
objective functional to optimize (maximize)

J(ε) = 〈Ψ(T )|O|Ψ(T )〉 − α
∫ T
0 ε2(t)dt

Examples (O = projection to state ψtarget) Definition
< f |O|g >=< f ,Og >.

J(ε) = 2<〈ψtarget |ψ(·,T )〉 −
∫ T
0 α(t)ε2(t)dt

J(ε) = 2− ‖ψtarget − ψ(·,T )‖2
L2 −

∫ T
0 α(t)ε2(t)dt
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

Standard optimization procedure

• construction of an extended objective functional i.e., add
constraints through an adjoint state χ(x , t)

J(ε) = 〈Ψ(T )|O|Ψ(T )〉 − α

∫ T

0
ε2(t)dt

−2Re

∫ T

0

〈
χ(x , t),

{
∂

∂t
+ i · [H0 − ε(t)µ]

}
Ψ(x , t)

〉
Partial derivatives

δJ(ε)

δε
= −2αε(t)− 2Im 〈χ|µ|Ψ〉 (t)
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

Euler-Lagrange critical point equation

{
i ∂∂t Ψ(x , t) = (H0 − ε(t)µ)Ψ(x , t)
Ψ(x , t = 0) = Ψ0(x){
i ∂∂tχ(x , t) = (H0 − ε(t)µ)χ(x , t)
χ(x , t = T ) = OΨ(x ,T )

αε(t) = −Im 〈χ|µ|Ψ〉 (t)

• Chose a numerical algorithm to update the field ε(t), e.g.,

εn+1 = εn +
δJ(εn)

δε
(13)

slow convergence =⇒ complicated objective functional surface
Recent works by Alfio Borzi: functional surface seems to be very
flat with many almost optimal regions.
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

Compute the optimal field ε(t) (Krotov cf. Tannor et. al 1992):
(χk−1, εk−1,Ψk−1) → (χk , εk ,Ψk){

i ∂∂t Ψ
k(x , t) = (H0 − εk(t)µ)Ψk(x , t)

Ψk(x , t = 0) = Ψ0(x)
(14)

εk(t) = − 1

α
Im〈χk−1|µ|Ψk〉(t) (15){

i ∂∂tχ
k(x , t) = (H0 − εk(t)µ)χk(x , t)

χk(x , t = T ) = OΨk(x ,T )
(16)

In practice solve the equations (14)-(15) by propagating the
non-linear equation{

i ∂∂t Ψ
k(x , t) = (H0 + 1

α Im〈χk−1|µ|Ψk〉(t)µ)Ψk(x , t)
Ψk(x , t = 0) = Ψ0(x)

(17)
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

Zhu & Rabitz formulation (1998)

{
i ∂∂t Ψ

k(x , t) = (H0 − εk(t)µ)Ψk(x , t)
Ψk(x , t = 0) = Ψ0(x)

εk(t) = − 1

α
Im〈χk−1|µ|Ψk〉(t){

i ∂∂tχ
k(x , t) = (H0 − ε̃k(t)µ)χk(x , t)

χk(x , t = T ) = OΨk(x ,T )

ε̃k(t) = − 1

α
Im〈χk |µ|Ψk〉(t)

THEOREM (W. Zhu and H. Rabitz. J. Chem. Phys., 109:385–391,

1998.) Suppose O is a semi-positive definite (auto-adjoint)
operator. Then for any k ≥ 0: J(εk+1) ≥ J(εk), i.e. there is an
improvement in the functional at any iteration.
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

A general class of algorithms (Y.Maday & G.T. 2002)

{
i ∂∂t Ψ

k(x , t) = (H0 − εk(t)µ)Ψk(x , t)
Ψk(x , t = 0) = Ψ0(x)

(18)

εk(t) = (1− δ)ε̃k−1(t)− δ

α
Im〈χk−1|µ|Ψk〉(t) (19){

i ∂∂tχ
k(x , t) = (H0 − ε̃k(t)µ)χk(x , t)

χk(x , t = T ) = OΨk(x ,T )
(20)

ε̃k(t) = (1− η)εk(t)− η

α
Im〈χk |µ|Ψk〉(t) (21)

Particular cases: Zhu & Rabitz for δ = 1 and η = 1; Krotov
(Tannor et al. 1992) for δ = 1 and η = 0.
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

THEOREM If O is an hermitian observable semi-positive definite
then, for any η, δ ∈ [0, 2] J(εk+1) ≥ J(εk).

J(εk+1)− J(εk) =〈
Ψk+1(T )−Ψk(T )|O|Ψk+1(T )−Ψk(T )

〉
+

α

∫ T

0
(
2

δ
− 1)(εk+1 − ε̃k)2 + (

2

η
− 1)(ε̃k − εk)2
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

Figure: Successful quantum control for the localization observable.
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Numerical algorithms for nonlinear laser shaping

Background on monotonically convergent algorithms in the bilinear case

Figure: Typical monotonic convergence; two regions are obtained: initial
finding of a descent direction (exploration) followed by the optimization
step (exploitation).
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Numerical algorithms for nonlinear laser shaping

Monotonic algorithms for non-linear cases

Nonlinear situations: Euler-Lagrange

Quadratic intensity and quadratic penalization in ε:
J(ε) = 〈Ψ(T )|O|Ψ(T )〉 − α

∫ T
0 ε2(t)dt

Critical point equations :{
i ∂∂t Ψ(x , t) = (H0 − ε2(t)µ)Ψ(x , t)
Ψ(x , t = 0) = Ψ0(x){
i ∂∂tχ(x , t) = (H0 − ε(t)2µ)χ(x , t)
χ(x , t = T ) = OΨ(x ,T )

αε(t) = −ε(t)Im 〈χ|µ|Ψ〉 (t)

Remark: we obtain no useful formula to iterate on εk → εk+1 !!
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Numerical algorithms for nonlinear laser shaping

Monotonic algorithms for non-linear cases: motivation

Nonlinear situations: Euler-Lagrange

3rd order intensity and quadratic penalization in ε:
J(ε) = 〈Ψ(T )|O|Ψ(T )〉 − α

∫ T
0 ε2(t)dt

Critical point equations :{
i ∂∂t Ψ(x , t) = (H0 − ε3(t)µ)Ψ(x , t)
Ψ(x , t = 0) = Ψ0(x){
i ∂∂tχ(x , t) = (H0 − ε3(t)µ)χ(x , t)
χ(x , t = T ) = OΨ(x ,T )

αε(t) = −ε2(t)Im 〈χ|µ|Ψ〉 (t)

Remark: formula ε(t) = − α
Im〈χ|µ|Ψ〉(t) may be unstable

Remark: we obtain no monotonicity if we just plug the formula to
iterate on εk → εk+1 !!
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Numerical algorithms for nonlinear laser shaping

Monotonic algorithms for non-linear cases: motivation

Nonlinear situations: J. Salomon, C. Dion, G.T. for
quadratic control

Let us consider H(t) = BJ2 − µ0E (t) + µ1E
2(t) and Ψk , χk the

direct and respectivelly adjoint states.
Then the update formula

E (t) = −
Im

〈
Ψk |µ0|χk−1

〉
(t)

2Im 〈Ψk |µ1|χk−1〉 (t)− α
(22)

gives a monotonic algorithm (after computations).
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Numerical algorithms for nonlinear laser shaping

Monotonic algorithms for non-linear cases: motivation

Nonlinear situations: polynomial case of Ohtsuki and
Nagakami

Let us consider H(t) =
∑M

m=0 HmEm(t) and Ψk
1 , ..., Ψk

m; χk
1 , ...,

χk
m direct and respectively adjoint states with the following rules

(for situation M = 2 i.e. H(t) = H0 + E (t)H1 + E (t)2H2):

- χk
1 is propagated with H(t) = H0 +

Ē k
1 +E k−1

2
2 H1 + Ē k

1 · E
k−1
2 H2

and Ē k
1 is from the critical point formula with E k−1

2 on the right
side

- Ψk
1 is propagated with H(t) = H0 +

E k
1 +E k−1

2
2 H1 + E k

1 · E
k−1
2 H2

and E k
1 is from the critical point formula with E k−1

2 on the right
side



Quantum chemistry and control: theoretical, experimental and numerical challeges

Numerical algorithms for nonlinear laser shaping

Monotonic algorithms for non-linear cases: motivation

Nonlinear situations: polynomial case of Ohtsuki and
Nagakami

- χk
2 is propagated with H(t) = H0 +

Ē k
2 +E k

1
2 H1 + Ē k

2 · E k
1 H2 where

Ē k
2 is from the critical point formula with E k

1 on the right side

- Ψk
2 is propagated with H(t) = H0 +

E k
1 +E k

2
2 H1 + E k

1 · E k
2 H2 and

E k
2 is from the critical point formula with E k

1 on the right side

Then the resulting algorithm is monotonic algorithm (after
computations :-) ).
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Numerical algorithms for nonlinear laser shaping

Monotonic algorithms for non-linear cases: motivation

Nonlinear situations: polynomial case with different
functional : M. Lapert, R. Tehini, G.T., D. Sugny

Let us consider H(t) =
∑M

m=0 HmEm(t) and introduce in the cost

functional the term
∫ T
0 E 2n(t) instead of the classic (n = 1) term.

Set the following:
E k(t) = ...(equation involving E k(t), E k−1(t), χk−1 and the
current Ψk(t)) (cf. paper, eq 24) .

Then the resulting algorithm is monotonic algorithm (after
computations :-) ).

Remark: only one direct and adjoint iteration, but at the price of
modifying the cost functional.
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Numerical algorithms for nonlinear laser shaping

Monotonic algorithms for non-linear cases: motivation

Nonlinear situations: construction and insights

Let us consider H(t) = H(ε(t)) and compute J(ε′)− J(ε) for

J(ε) = 〈Ψ(T ),Ψtarget〉 − α
∫ T
0 ε2(t)dt

J(ε′)−J(ε) = −
∫ T

0
〈χ, [H(ε′(t))−H(ε(t))]Ψ〉+α(ε′(t)2−ε(t)2)dt

(23)
It can be proved that the term is (under suitable conditions) of the

form J(ε′)− J(ε) = −
∫ T
0 ∆(ε′, ε) · (ε′(t)− ε(t))dt thus in order to

be monotonic it is enough to choose ∆(ε′, ε) = θ(ε′(t)− ε(t)).
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Numerical algorithms for nonlinear laser shaping

Lyapounov (tracking) algorithms

Convergence of Lyapunov algorithms (joint works with M.
Mirrahimi, P. Rouchon)

Let us consider V (t) = ‖ψ(t)− ψtarget(t)‖2 with ψtarget(t) a
stationary state i.e. i ∂∂tψtarget(x , t) = H0ψtarget(x , t)

dV

dt
= 2ε(t)Im〈µψ, ψtarget〉 (24)

e.g. ε(t) = −aIm〈µψ, ψtarget〉 (a ≥ 0) dV
dt will be negative thus the

Lyapunov function V decreases.
Remark: we can characterize the limit points by computing all
derivatives of V which have the form Im〈[H0...[H0, µ]...]ψ, φ〉.
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Numerical algorithms for nonlinear laser shaping

Interpretation of monotonic and tracking algorithms

Interpretation of monotonic and tracking algorithms

J(ε, ψ, χ) = 2<〈ψtarget |ψ(.,T )〉 −
∫ T
0 α(t)ε2(t)dt

−2<
∫ T
0 〈χ(., t)|∂t + iH − µε(t)|ψ(., t)〉dt

Euler-Lagrange equations:

∇χJ →


i ∂∂tψ(x , t) = (H − ε(t)µ(x))ψ(x , t)

ψ(x , t = 0) = ψ0(x)

∇ψJ →


i ∂∂tχ(x , t) = (H − ε(t)µ(x))χ(x , t)

χ(x , t = T ) = ψtarget(x)
∇εJ → α(t)ε(t) = −= < χ(., t)|µ|ψ(., t) >
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Numerical algorithms for nonlinear laser shaping

Interpretation of monotonic and tracking algorithms

Interpretation of monotonic and tracking algorithms

At time t, “best guess for a solution” is ε = ε · χ[0,t] + εref · χ[t,T ].

Forward objective functional (easily to compute at time “t”):
i ∂∂tψref (x , t) = (H − εref (t)µ)ψref (x , t), ψref (T ) = ψtarget .

Jfwd(ε, t; εref ) =
∫ t
0 αε

2(t)dt +
∫ T
t αεref

2(t)dt + ‖ψref (t)−ψ(t)‖2.

Theorem (G.T., Proc. 44th IEEE CDC-ECC Sevilla, Spain, Dec. 2005. ; G. T., J. Salomon, J. Chem. Phys.

124:074102 (2006).): J(ε) = Jfwd(ε, t; εref ).
Decisions on the optimality of some control can be made locally
e.g. by monotonic algorithms that ensure Jfwd(ε, t; εref ) is
decreasing locally in time.
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Numerical algorithms for nonlinear laser shaping

Interpretation of monotonic and tracking algorithms

Interpretation of monotonic and tracking algorithms

Evolving state ψk approaches monotonically reference ψk
ref . No optimization during the backward propagation

(i.e. eεk+1 = εk+1), imply ‖ψk+1
ref

− ψk+1‖ = cst. The shrinking distance between the two trajectories ensures

the progression of the quality functional toward optimal values. The optimal couple of trajectories will be a tube

whose nonzero width is related to the driving laser field fluence penalty α.
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Perspectives and current work

Robustness to noise (joint work with Adrian Zalinescu, Iasi)

SDE (”random laser” approach)

idΨ(x , t) = (H0 − ε(t)µ)Ψ(x , t)dt − σµΨ(x , t)dWt (25)

Goal: maximize the functional (OCT)

J (ε) := E 〈Ψ(T ) |O|Ψ(T )〉 − α

∫ T

0
ε2 (t) dt.

The associated backward SDE is

idχ (x , t) = [(H0 − ε (t)µ)χ (x , t)− σµZ (x , t)] dt − iZ (x , t) dWt

χ (x ,T ) = OΨ(x ,T ) . (26)

The term Z makes χ adapted with respect to the filtration
generated by Wt .
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Robustness to noise

idΨk (x , t) =
(
H0 − εk (t)µ

)
Ψk (x , t) dt − σµΨk (x , t) dWt ; (27)

Ψk (x , 0) = Ψ0 (x) ; (28)

εk (t) := (1− δ) ε̃k−1 (t)− δ

α
E Im

〈
χk−1 |µ|Ψk

〉
(t) ; (29)

idχk (x , t) =
[(

H0 − ε̃k (t)µ
)
χ (x , t)− σµZ k (x , t)

]
dt − iZ k (x , t) dWt ;(30)

χk (x ,T ) = OΨk (x ,T ) (31)

ε̃k (t) := (1− η) εk (t)− η

α
E Im

〈
χk |µ|Ψk

〉
(t) . (32)

Theorem (G.T. & A. Zalinescu 08)

The algorithm is monotonic i.e. J(εn+1) ≥ J(εn).

Numerical problem: computation of the conditional expectation to
solve for χ.
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Convergence of the algorithms (joint work with Catalin
Lefter, Iasi

• Question : for H = H0 + εµ+ ε2α does a Lyapunov type control
converges, and to what ?
• this is a follow-up of a work with Mazyar Mirrahimi for the linear
case (Lyapounov formulation), but same arguments fail (despite
the fact that controllability is the same !);
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