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Background on exact observability
and Its cost




Let X and Y be Hilbert spaces, A: D(A) — X et C € L(D(A),Y).

(1) W) = Aw(t), y(t) = Cwl(t).

Assume that A generates a C° semigroup, denoted T, in X.

Definition 1. C € L(D(A),Y) is an admissible observation operator for
T if there exist 7 > 0, kr > 0 such that

2 / ICTuzol3dt < lzol% ¥ 20 € D(A).
0

Definition 2. Let 7 > 0 and let C' € L(D(A),Y) be an admissible observa-
tion operator for T. The pair (A, C) is exactly observable in time 7 if there
exists K, > 0 such that

K2 [Tl > ol ¥ 20 € D(A) (1)
0
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Definition 3. The smallest constant K, > 0 satisfying (1) is said
the observation cost in time 7.

Remark 1. C is admissible iff the operators (V. )~ defined by

CTizg for te]0,7],
0 for t > T,

(Wr20)(t) = {

can be extended to operators in £(X, L?(0,00;Y)).
(A, () is exactly observable in time 7 iff

K ||9-20 £(D(A),12(0,00,7)) = 201l x VreD(A).

Proposition 1. If (A, C) is exactly observable in time 7 then there exists
the operators E, € L(L*(0,00;Y), X) such that

Ix = TqJTa K = HETH
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Two examples
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A one-dimensional Schrodinger equation

(i (@) =0 (ze(Om), t > 0),
T w=0 ($€{01} > 0),
[ W= wo (z €(0,1), t=0)
The exact boundary observability problem:
dw 2 ™ dwyg 2
k2 0,t)| dt> ——(0)| d
[ ax [11T00)] d

Equivalent form : If (\,) is a regular sequence and 7 > 0 (large enough)
then there exists k. with

2 [ 3 ane 42 lanl (anhnen € ()

n>0 n>0




The Schrodinger equation In a square

Let Q= [0,7]?, ' C 9Q and 7 > 0.
The required observability inequality is

ow |
ov

2
KT,F

dr > / [Vw(0)[*dadt,
0 Q

for every solution w.

w+itAw =0 (xe, t > 0),
w =0 (x € 002, t > 0).

Remark.
The classical result of Lebeau (1992) needs a I' containing two sides.




An equivalent inequality

Let 7, a > 0. The observability inequality holds for every 7 and I' iff for
every 7 and L

Tt 27i 24 n2}¢) |2 2
/ / | Z Gy € Wz(nx—l—{m +n<} )‘ dxdt > 0 Z ’amn‘
0 0

m,nez m,ne

for every (amn) € ¢*(Z x Z,C).
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Previous cost estimates (1D)

Result of Miller (2006):

14

Z y

liminf 7lnk,- >
T—0

36 2
].. ]. kT < ‘4: - )
S T = (37) #

where p = ([ \/a(:r;)dx)z.
Open question: Improve the upper bound and possibly show that

lim 7lnk,, = £

7—0 4 .
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Previous results in 2D

For boundary observation:
Two sides are required.

For observation distributed inside €2:

Any observation region is OK (Jaffard, 1992).
No longer true if €2 is a disk.
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Statement of the main results

12



Institut

First main result (1)

Theorem. (Tenenbaum and Tucsnak, to appear in JDE)
In the 1D case, the observation cost k, satisfies

limsup 7lnk, < %

7—0

where p = ([ \/a(x)daz)2.

Remark. The above improve Miller’s estimate

36
li Ink, <4
ol (37) 8

but we are still far from <.
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Second main result

Theorem. (Tenenbaum and Tucsnak to appear in Trans. of the AMS)

Let Q be a rectangle in R? and let 7 > 0. Then the system is exactly
observable in any time 7 > 0 iff ' contains non empty open vertical and
horizontal parts.

Moreover, if €) is square-like then there exist /K, Ko, K3 s.t.

(In |11])? (In|L2)* K, }
+ K +e73/7
1] > Ll

Remark. The result improves Ramdani, Takahashi, Tenenbaum et Tucsnak
(JFA, 2006) where we tackled the case of te square without getting the
arbirarily small observation time.
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Inequalities of
Ingham-Beurling-Kahane type
and cost estimates
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Ingham’s inequality

Theorem. (Ingham, 1936) Let v, M > 0 and let (\,) € *(Z,R) s.t
A4l — A > >0 (n€Z).

Then, for every interval I with |I| > 27w/~ and for every sequence (a,) €
(*(Z,C), we have

(1-2)

>ladf < [

nez

E a, e

nez




Proof
We set f(t) = > ape™! with y =1, = [-m — e, 7 + €.
Let k(t) = S5 [(mr + €)? — t2].
Then k € L'(R) U L>°(R) is an even function and K = k, with
k(t) <0 si tg[—m—em+e|,

K(u)=0 si |ul>1, K(0)>0.

Then
N > N S [T S
K@©0)> lanl* =Y ¥ anamKOm =)= [ k(@) ()] dt
J oo
[T+e rm+te
g/ | f@)|2dt < C | |f(t)]dt,
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Theorem. (Beurling, 1950, Tenenbaum et Tucsnak (2006)).
Let (An) C R be a sequence with

>\n—|—1 — >\n Z ’7/, (n c Z),
Assume that there exists v > +' and M € N* such that

Aot —An > M (ne€N).

2
Then, for every interval I with [(I) > —W, there exists
Y
§ > 6(v,~', M, I) such that
2
/ ZaneM”x dx > 5Z\an\2,
I'nez nez

for every (a,) C I%(C).
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Proposition (Tenenbaum et Tucsnak, 2007) Let (A,) C R be a regular se-

quence s.t.

A particular class of
non-harmonic Fourier series

(A, —rn?| < Cn Vn>1.

ei)\nt

an,

dt V (an)nen € £4(C),
|
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Idea of the proof (1)

We construct a sequence (g,)nen+ of entire functions satisfying:
(A1) [gn()] <a K- /{1 + |z = Xal} (2 €R);
(A2) gn(z) <, €™ (z € C);
(A3) gn(Ag) = Ok, for all k, n € N*.

By Paley-Wiener, g, is, for n € N*, the Fourier transform of f, € L*(R)
supported in [—7/2,7/2].

Moreover, the sequence ( — fi(t —7/2)), is biorthogonal (in L?(0,7)) to
the sequence (6_2’””"“). We continue as in the proof of Ingham’s theorem.
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Idea of the proof (I1)

The main difficulty is the construction of the sequence (g,). This is done

.
1M twrn
111 VWO

1. Construction (via infinite products) of a sequence of entire functions
(U,,) such that ¥,,(A\x) = d,,1 and

U, (2) < VET 41z = A}

2. Find the best “multiplier” “ H(z) such that g,(z) = ¥, (2)H (z) satisfies




How does number theory help
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A Beurling type inequality in 2D

Theorem. (Tenenbaum et Tucsnak (2008))
For every b, 7 > 0, there exists §(b,7) > 0 s.t.

T rb . 2
/ / ‘ Z amnez(nx+{m2+n2}t)‘ dzdt > 6 Z |amn|2
0 JO

m,nez m,ne

for every (amn) € £*(Z x Z,C).

Remark. The result is obvios for b, 7 > 2.

(1)
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On the distribution of the sums of two squares

Lemma 1.
Let NV = {m? + n? | m,n € Z}. Then there exists an absolute constant

T

C > 0s.t.sup NNy, y +z]| < C x> 2).

yeR\ .y +al| < Ce (#22)

Theorem (Selberg) Let M, N € N and let A C]M, M + N|NN. Assume that,

for each prime power p", A is excluded from w(p") residue classes modulo
p" and, furthermore, that, for each p, the forbidden residue classes mod p”
and mod p°® are disjoint whenever r # s. Then, for each ) > 1, we have

Al < N+
Als —
with
[ b o O R
2 1 pm
d<Qp"||d
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A simple artihmetic lemma

Lemma. Letn, x, y, z € Z be such that

A= 5
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Proof. Assume that n and z are even.

Then 1+ y* = 0(4), which is a contradiction.
If n is even and x is odd, then z? = 1(8) and
(n +2)? —n? = 4(8), so that

Z=Enf+2°—(n+2)?2=1-4=5(8),

which is impossible.




On the distribution of lattice points on a circle

Lemma 2.

For M, N,V € N* we senote by Z = Z(M,N,V) the set of n € N s.t.
M<n < M+ N and V — n? 1S a square. Then

1Z| < C+/Nlog(2N),

for some constant C > 0.

Proof. Use again Selbergs’ sieve and ...

Remark. In the case of a rectangle with incommensurable side-lentghs we
also need some diophantine approximation.
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