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1 Introduction

We shall discuss on the backward stochastic differential equation (BSDE) of
the form

| vr=¢  teo, T

When d¢ #(), then (P) is called backward stochastic variational inequality
BSVI).

The first paper concerned with BSDEs:

Bismut, J.M. (1973) Conjugate convex functions in optimal stochastic

control. J. Math. Anal. Appl.,44, p. 384-404.
He introduced a nonlinear Ricatti BSDE and showed the existence and

uniqueness of bounded solutions.



Pardoux, E. and Peng, S. (1990) Adapted solution of a backward
stochastic differential equation. Systems Control Lett., 14, p. 55-61.
considered general BSDEs, and this paper was the starting point for the de-
velopment of the study of these equations.

The interest in these equations is not confined to pure mathematicians -
they have important applications in the theory of mathematical finance; in
particular, they play a major role in hedging and nonlinear pricing theory for
imperfect markets.

First, the theory of contingent claim valuation in a complete market studied
by Black and Scholes (1973), Merton (1973, 1991), Karatzas (1989), among
others, can be expressed in terms of BSDEs.

Indeed, the problem is to determine the price of a contingent claim & > 0
of maturity 7' , which is a contract that pays an amount £ at time 7" . In
a complete market it is possible to construct a portfolio which attains as
final wealth the amount &. Thus, the dynamics of the value of the replicating
portfolio Y are given by a BSDE with linear generator f, with Z corresponding



to the hedging portfolio. Using BSDE theory, we will show there exist a unique
price and a unique hedging portfolio —by restricting admissible strategies to
square-integrable ones.

In certain applications the state Y; should be maintained in a (convex)
domain K. Practically this is realized with a supplementary drift —0Ix (Y;)
in the equation. In this case instead of the above model, it is considered the

model:
{ —dY; + 01k (Yy)dt > F(t,Yy, Zy)dt — ZdWry,

Yr=£¢(e K, te]0,T].

or more general model:

e stochastic equations with a supplementary subdifferential drift

_dY, + 0p(Yy)dt 3 F(t,Ys, Z,)dt — Z,dW,,
Yr =& € Dom(p), t€]0,T].

that is a BSVI.



Hence given a nonempty closed convex set K, a final (maturity) moment
T > 0 and a final value (contingent claim) £ € K, a supplementary source
—0Ik(Y:) on the BSDE arrives to maintain the solution (price) Yy € K for
all 0 < s <T.

It is naturally to put the question: given the equation

—dl/;g — F(t, Yt, Zt)dt - thWt,

(P1) :
Yr=¢&, tel0,T].

what are the conditions on the coefficient F' such that the price Y; satisfies

the constrain Y, € K, for all 0 < s < T.?7 This last problem is the viability
problem of K for the BSDE (P1).

We present an existence and uniqueness result for the backward stochastic
variational inequalityBSVI) in Hilbert spaces :

| Yr=¢,  tel0,T).



The first remark (and very important !) is on Dom (y) :

e usually, in the case of progressively SVI, it is assumed

int (Dom (¢)) # 0;

e in the case of BSVI it is not necessary to put this assumption.

Remark In the co—-dimensional case, the condition int (Dom (¢)) # 0 is,
in general, a very strong assumption.

Remark from the beginning that the problem (P) is a general approach for



e multivalued boundary Neumann backward stochastic problem:

p

/N
p—

N—"
2/

\

—dY,—AY,dt= F(t,Y;, Z;)dt — Z,dW,),
on Qx[0,T]|xD,

—aY({gi’ ?) c 05(Y(t,x)), on Q2x]0,T[xT,
Y(w, T, x) =&w,x), on QxD

In this case H = L?(D), D is a bounded domain from R? with ' =
Bd (D) sufficiently smooth and ¢ : H —| — oo, 400] is given by

so(u)_{ %fp\gmd ul*dz+[pj(u)do, if w € HY(D) and j(u) € L (T),

+00,

otherwise.



multivalued Dirichlet backward stochastic problem:

( —dY;, — AY,dt + 0j(Yy)dt > F(t,Yy, Zy)dt — ZydWy),
on Qx[0,T]|x D,
(2) : S Y(w,t,z) =0, on @ x [0,T] x T,

\ Y(w, T,2) = &(w,x), on Q x D.

Now ¢ : H = L*(D) —] — 0o, +00] is given by

1
o(u)=1{ 2 [plgradu*dz+ [, j(u(zx))de, if w e H' (D) and j(u) € L' ("),
~+00, otherwise.

and the multivalued BSPDE coming from porous media models

(Y, — A (8j(Yt)>dt S F(t, Y, Z,)dt — Z,dWs,

(3) : « on 2x[0,T|xD,
' Y(w, T,x) =0, on Q2 x D

07 (Y (w,t,z)) 20, on Qx]0, T[xT
\




In this case p : H=H (D) —] — 0o, +00]

[ @iz, itue L(D), () € 1}(D)
pu) = D
~+00, otherwise.
(The corresponding forward SDE for porous media was considered (2006)

by V.Barbu - G.Da Prato - M. Rckner: Ezistence of strong solutions for
stochastic porous media equation .



A second motivation of the study
In finite dimensional case if we consider the stochastic differential system

X? =g —|—/ b(XZ)dr —|—/ o(X2")dW,., s >0
0 0
and the scalar multivalued BSDE
t t t
Yo+ [ Uf dr=g(X0) + | $OGLYE ZE)dr— [ Z2dW, s € )
Ui, € 0p(Yy;)
(p: R —] — 00, 400] is a l.s.c. convex function), then

u (t7 QZ) — t;xO

is a (viscosity) solution of the parabolic variational inequality (in particular a



parabolic obstacle problem for 0y = 01l 5 )

P e, a) + dp(u(t2) 3 (@ u(t,2).0" () Vot 2)).

\ t>0, z€R™
u(0,z) = g(x), x€R™,

\

where the second order differential operator:

Lo 33 (0r a5 0+ Y b0 ) vec@n,

In infinite dimensional case if we denote

e B,, (H) the set of measurable functions g : H — R with polynomial
growth,

o L:Dom (L) C By (H) — Bpo (H) the linear operator

Lo(x) = 5Trace [o () o () D*(x)] + (b (x) , V()



e P, : By, (H) — By, (H) the transition semigroup:

P (g)(x) =Eg(Xy), z€H, ¢ >0

Then
u(t,z) = P (g) (z)

is solution of the linear Kolmogorov equation

Oul(t
{ “gt’x) — Lu(t,z) =0, t>0, zcH
u(0,2) =g(z), z € H
(assuming g € C, (H)).
Considering on Hilbert space BSDE in Hilbert of the form (P) , with ¢ = 0,
Fuhrman and Tessitore (2006) prove that

u (ta £U) — YtTO



is solution of the nonlinear Kolmogorov equation

( Ou(t,x) _ *
ey Lu(t,z) = f(z,u(t,z),c*(x)Vu(t,x)),

< t>0, zcH
{ w(0,z) =g(z), zeH,

Open problem !: Multivalued Kolmogorov problem in Hilbert space:

( %gt’ z) _ Lu(t,z) + dp(u(t,z)) > f(x,ult,z), o (z)Vul(t, z)),

< t>0, zeH
\ w(0,z) =g(z), zeH,




2 Martingale representation theorem

Denote (2, F,P,{F;}:>0) a complete right continuous stochastic bases. We
will assume that

Fe=0({Bi(s), 0<s<t, je N }HVN

where N is the P-null sets of F and {3;,j € N*} C L?(;C([0,T];R)) is a
family of independent real valued standard Wiener processes;
If (H, |-|) is a real separable Hilbert space we denote:

o SE[0,T] = Liy(:C([0, T H)) © L7(Q, F,B;C(0, T} H)), r > 1, the
closed linear subspace of continuous adapted stochastic processes,;

o L7 (2 L90,T;H)) C L"(£2; L9(0,T;H)), r,q > 1, the closed linear sub-
space of progressively measurable processes



e M"(Q2 x |0, T];H) the space of continuous r-martingales M, that is:

my) M is a continuous adapted stochastic process,
mo)  My(w) =0, a.s. w e,

m3) E|M| <oo, Vi>0,

my)  E(M|Fs) = M, if s<t.

If » > 1 then
M"(Q2 x [0, T);H) C Sy [0,T], is a closed linear subspace.

Let )
Ko CKCK

three real separable Hilbert spaces such that

Ko = QY*(K)

where () : K — K is a linear bounded self—adjoint strictly positive oper-
ator; and



e the embedding J : Ky — K is Hilbert—Schmidst.

If{g;} is an orthonormal complete bases in Ky then
J

~

defines a Wiener process on K (a cylindrical Wiener process on K) with
JJ* the covariance operator.

e Denote LY = Ly(Ky, H) the separable Hilbert space of all Hilbert—
Schmidt operators U € L(Kg, H) that is

U112 =) _[Ugi|* < o0

1



e Denote Ay x (0,

(

IZ1lp = 4

T)?

E

\

I T
E ( / zs@ds)
0

p € |0, 0ol, the space of progressively measurable
processes Z : Qx]0,T[— LY such that:

p -
2

T
1A (/ Zsléds>
0

1Al

p

N =

< oo, itp>0,

if p=20.

The space (A g, (0,7),[-ll,), p>1, is a Banach space and Ay, i (0,7
, 0 < p < 1,is a complete metric space with the metric p(Z1, Z2)=| 21—
Z3||p; when p = 0 the metric convergence coincide with the probability

convergence.



The stochastic integral

120 - | W,

is defined as linear continuous operator

def

I: NG, (0.7) — S5[0,7) " L2,(0 C([0, T); E)

for p € [0, 00|, and has the properties:
(@)  EIZ)1)=0, ifp>1,
(b) EU( (TP =215, ifp=>2,

(c) —mzmp <E sup [I(Z)@®)]" < cpl Z]},
te[0,T]

1f p >0 (Burkholder-Davis-Gundy inequality)
(d)  1(Z) e MP(Q x [0,T]; H)



Theorem 1. (Martingale representation)

(a) If T > 0 and & € LP(Q, Fr,P;H), p > 1, then there exists a unique
Z € Ay, such that

T

¢ = Re + / Z,dW, (2)
0

(b) If M € MP(Q2x [0,T];H), then there exists a unique Z € Ay}, such that
t

M(t) = / Z,dW,. (3)
0

Proof. b) The representation result (b) follows from (a) for €=M (T) and
passing to conditional expectation E(-|F;).

a) Uniqueness. If Z1, Z5 satisfy (2), then

2

=0,

T T
12, - Z|% < E / Z,(s)dW, — / Zs(s)dW,
0 0




which yields Z7 = Zs.

FExistence. One proves, for p = 2, that

T
E{h+/ Z,dW, : h € H, ZeA%V}
0

is a closed linear subspace dense in L?(Q, Fr,P; H).
Proposition 2. (It6’s formula) Let
) £eLV(Q, Fr,P;H),
i)  FelLd (Q;L'0,T;H))
) Z € AI%IXKO (OvT) )
) Y € Ly, (9C([0, T H)),

such that

T T
(1.9 yt:g+/ F(s)ds—/ Z.dW., ¥t € [0,T].P — a.s.
t t



If ¥ :]0,T] xH — R and its derivatives ;1. ! are uniformly continuous

on bounded subsets on [0, T] x H, then P-a.s., for all t € [0,T] :

T 1
GeY+ [ [Vt T (5, Y2275 | ds

— Y(T,6) + / (s, Yy, F(s)) ds — / (W (5, Ys), ZedW)

In particular, for ¥ (t,z) = |z|* we have:

Energy Equality

T T T
Y2+ / 1Z,|%ds = [ + 2 / Y, F(s)) ds — 2 / Yo, ZdW)
t t t

Vvt € [0,T], P—a.s. w € .



3 Backward stochastic differential equation (BSDE)

3.1 BSDE: Lipschitz condition
Consider the following BSDE

T T
Yt:§+/ F(s,YS,ZS)ds—/ ZsdW, (4)
t t

where we assume

¢ p>1,
g e Lr (QafTap; H) (5)

O the function F(-,-,y,2) : Q x [0,T] — H is P-measurable for every
(y,2) € H x La(Ko, H),



O there exist L € L' (0,T), £ € L*(0,T) such that

( (I) Lipschitz conditions:

for all y,y € H, z,2" € Ly(Ko,H), dP @ dt — a.e. :
(Ly) [Pty 2) = F(ty, 2)| < L(¢) [y —yl

< (Lz)  [F(ty,2") = Fty,2)| <L) ]2 — 2] ;

(II) Boundedness condition:
P

(By) E (/OT|F(t,O,O)dt> <.

We recall the notation

\

S5 10,71 (J sk [0,7]

p>1

Theorem 1 Let p > 1 and the assumptions (5) and (6) be satisfied. Then
the BSDE (4) has a unique solution (Y,Z) € Sy [0,T] x Ay, x (0,7). More-

over uniqueness holds in S [0,T] x Apyk, (0,T).



Proof.

The existence and uniqueness of the solution (Y, Z) is obtained by Banach
fixed point theorem in the Banach space Sj; [0,T] X AﬁxKO (0,T) equipped
with an equivalent norm

T, p/2
def 2
1020 max B | s P )+ / Z2dr| |,
1=1,N TE[Ti_l,Ti] T; 1

T
and T; = ZN The mapping

®: S [0,T) x Ay, (0,T) — Sy [0,T] x Agy g, (0,7,
¢(U,V) = (Y, Z), defined by
Y, =B+ [, F(s,Us, Vi)ds|Fy),

T
§+f0T F(s,Us,Vs)ds = E [§+f0T F(S,US,VS)CZS} —|—/ ZsdW,
0

is a contraction for /N large enough



3.2 BSDE: Monotone case.
We shall assume :
(BSDE — MHj) :

¢ £:Q— R™isaFr — measurable random vector;
¢ the function F(-,-,y,2) : @ x [0,T] — R™ is P-measurable for every
(y7 Z) E Rm X Rka7

¢ there exist some deterministic functions u € L' (0,T;R) and £ € L? (0,T;R)
such that



(I) for all 4,y € R™, 2,2/ ¢ R™** dP® dt — a.e. :
Continuity:
(Cy) y — F(t,y,2z) : R™ — R™ is continuous ;
Monotonicity condition:
(My) Y =y Fty,2) - Ft,y,2) <p@)y —yl*;
Lipschitz condition: (7)
(L)  |F(ty,2") = F(t,y,2)| < L(1) |2" = 2| ;

(II) Boundedness condition:

T
(Br) / F7 (t)dt < oo, a.s., Yp=0.
0

where
F¥ (t) =sup {|F(t,y,0)| : |y| < p}.



Theorem 2. Let p > 1 and the assumptions (BSDE — MHp) be satis-

fied. If for all p > 0 :
T p
E |¢° +E (/ Fp#(t)dt> < 00,
0

then the BSDE:
T T
Y. :£+/ F(s,Ys, Zs)ds —/ Z.dBs, a.s.
' '

has a unique solution (Y, Z) € Sy [0,T]x Ay k. (0,T). Moreover, uniqueness
holds in S+ [0,T] x Afiyk, (0,T), where

def
Syt [0,71= () SE[0,7].
p>1

Proof.
Step 1. Uniqueness.



Step 2. Existence is obtained passing to limit in the approximating equa-
tion

K;.(t)zﬁ—i—/tTFg(s,Yg,Zg)ds—/tT Z.(5)dWW, (8)

where

1
F&(t7y7z) — ar;.:(t,y, Z) —|_ g (Pg(t,y, Z) _y) — F(t7rg(t7y7 Z)7Z)

and I'. is the unique solution of the equation

[ +elal’e — F(t, 1., 2)] = v.



3.3 BSDE - multivalued monotone case (BSVI)
Consider the BSVI

—dY; + 0p(Yy)dt > F(t,Ys, Zy)dt — ZydWy,
Yr =€, tE[O,T],
where F' satisfies ( BSDE — MHp) and

@ : H —] — 00, +0], is a proper convex s.c.i. function

0Jy denotes the subdifferential :

Op(u) ={h e H: (h,v—u) + @(u) < p(v), Yo € H},
Dom (0p) = {u € H: dp(u) # 0}.

(10)



Definition. The solution of BSVI (9) is a couple (Y,Z) € S%[0,T] x
Ak, (0,T) such that

a) Y(w,t) € Dom (0p), (w,t) —
b) FU € LY (2 x L' (0,T ]H[))
U(w,t) € 0p(Y (w,t)), (w,t) — a.e.,

and

T T T
Y;—I—/ U(S)dszf—l—/ F(S,YS,ZS)ds—/ ZdWs,
t t t

Vitel0,T], a.s. w € .



We add the following assumptions for F’
(A)  There exist p > 2, a positive stochastic process 3 € L' (Q x ]0,T),
a positive function b € L' (0,T) and a real number x > 0, such that

(i)  Ep™(§) <oo, and
(41) for all (u,q) € dp and z € R™*F :
(11)

1
(0 F (t,0,2)) < 2 [0 + By +b(0) ful” + 2]
dP @ dt — a.e. (w,t) € Q2 x [0,T]



Theorem 3. Let p > 2 and the assumptions (BSDE — MHpg) be satis-
fied. Suppose moreover that for all p > 0

E |€|° +E (/OTFI?(S)CZS> < 00 (12)

and the assumption (A) is satisfied. Then there exists a unique pair (Y, Z) €

St 10, T) x Ay x, (0,T) and a unique stochastic process U € Mg . (0,T) such
that

T
(a) / |F(t,Y:, Z4)| dt < oo, P —a.s.,
0

(b)  Yi(w) € Dom(0p), dP®dt — a.e. (w,t) € Qx|0,T],
() Ui(w)€dp(YVe(w)), dP®dt — a.e. (w,t) € Q x[0,T]
and for all t € [0,T]

T T T
Yt+/ Usds:§+/ @(S,YS,ZS)ds—/ Z.dB., as.  (13)
t t t



Moreover, uniqueness holds in SI%HJF 0, T] x AI%IXKO (0,T).

Proof.
We have to prove only the existence.
Let € €]0, 1]. Consider the approximating equation

T T T
Vit [ Ve.vids—¢+ [ FeYEZds— [ ziaw,
t t t
where
. 1 5
e (u) = inf 2—8|v —ul”+ p(v) :veH
1
=5 lu- Jeu|® 4+ o(Jou)

and |
Jeu = (I+c0¢) " (u), Ve (u) = = (u—Jou)

(14)



By Theorem 2 the equation (14) has a unique solution (Y¢, Z¢) € Sy; [0, T x

Afyx, (0,T) and moreover
T
+EEQ/\QF@
t

In|” + (/t F(s,u0,0)|ds> ] :

T
E / V. (Y2)Pds < C (15)
0

p/2 p/2

T
E”t sup V7| 4 E7 </ "Os(Yf)ds>
t

s€(t,T]

< C ET

and

To obtain (15-d) we apply the

Lemma 7. (Stochastic subdifferential inequality) Let ¢ : Ry xR? —
R be a function of class C' such that for all t > 0 (¢,-) : R* — R is a convex
function. Let {X;;t > 0} be a continuous semimartingale. Then P — a.s. for



all t <T':

vt X+ | [Wg;X?“)dr+<vmw<r,Xr>,dXT> <G(T,Xr)  (16)

Proof.

Let t =t)g < t; <ty < --- < t, = T such that t;,; —t; = (T —1t) /n.
For each 0 <7 < n, from the the definition of the subdifferential operator, it
follows that

w(tiv th) + [w(ti-l—lv th‘+1) - w(tiv th‘+1)} + <vw¢(t@7 th')v th‘+1 T th>
< w(ti%—lv Xt¢+1)'

The result follows summing over ¢ and by taking the limit n — oo.

Hence

oo (YF) + / (Ve (YE)), dYE) < 0.(€)



and consequently
T T
oo (YF) + / Voo (Y2)Pds < o(€) + / (Voo (YE), F(s, Y2, Z5)) ds
t t

T
- / (V. (YE), ZdW,)
t

that yields (15).
Now using the inequality

(y — 9, Vo (y) — Vs (9)) > — (e +96) (Vee(y), Vs (7))

we obtain by Energy Equality for Y, — Y5 that

E( sup. Yo(t) = Ys(8)[*) + 12: — Zs[l3 < C(e +9) (17)
te |0,



4 Viability for BSDE and PDE

Consider the semiliniar parabolic system

(1<i<n
0 2D A tytt,2) = Filt (e ), 0% (4 ) Vet 2)), (1,0) €10, x B2
| w(T,z)=H(z), zeR%

(18)
where A(t) is a second differential operator

Tr(oo™ (t, ) Dypp(2)] + (b(t, 2), Vaip(2))

!
2
lzd: o(t, ) Tl )+zd:b-(t a:)ago(x) e C* (RY)
2 4= (00" (%ch%ﬁg e I Oy v ’



and

b:[0,T] x R — R?,

o :[0,T] x R — R4>F,

H:R* - R",

£ [0, TIxRIExR*"xR¥ =R, 1<i<n

are continuous and moreover

|b(t,33)—b(t,£1~2>|—|—|0'(t,£€)—O'(t,jf)‘ §L|JZ—§3‘,
f(tx,y,2) = f(62,9,2)| < Lly—gyl+ Lz —Z|

4.1 Viscosity solutions

M. CRANDALL, H. ISHII, P.L. LIONS: User’s Guide to the Viscosity

Solutions of Second Order Partial Differential Equations, Bul. AMS 27, 1-67,
1992.



Let S9*¢ c R9*9 the set of nonnegative definite symmetric matrix d x d .
Let uw € C((0,T) x RY) and (t,z) € (0,T) x R,
Definition

(a)  (p,q,S) € DV2Fu(t,z) C RxRIxS¥™>4 ((p,q,S) is a parabolic superjet
of function u in the point (t,x)) if

p(s —1) + {q.y — ) + 2 (S(y— ).y — 2) > [uls,y) — u(t,z)
+o (s —t| + ly — z|?), V (5,9) € Vit

or equivalent

wt,2) +p(s =) +{gy—2) + 5 Sy —2),y —7)| —uls,y) _

lim inf >
|s—t|+]|y—z|2—0 s —t| + |y — x|
0



(b)  (p,q,S) € DY27u(t,x) C Rx R4 xS ((p,q,S) is a parabolic subjet
of the function u in the point (t,x)) if
1
p(s =)+ (q.y—2) + 5 (S — 7).y — 2) < [u(s.y) - u(t.)
+0 (|S_t‘ + |y—l”2) ) v (Say) S V(t,x)

or equivalent

lim st wt, ) +p(s =) + @y —w) +5 (Sl —2),y —z)| —uls,y) _

|s—t|+|y—x|?—0 |S o t| + |y _ x‘Q B
0

We now give the definition of the viscosity solution of PDE (18):
Definition
(@)  w:[0,T] x R — R is a u.s.c viscosity subsolution of PDE (18) if
uw(T,z) < g(x), VaeR?



and ¥V (t,z) € (0,T) x R, V¥ (p,q,S) € DV2Tu(t,z) :

—p— 3T (o(t,2)0" (1,2)8) = (b(t,2), ) < [ (6,2, u(t,2), 0" (,2)0)

()  w:[0,T] x R* - R is a l.s.c viscosity supersolution of PDE (18) if
u(T,z) > g(z), ¥V eR

and V (t,z) € (0,T) xR, V (p,q,S) € DV2~u(t,x) :

1
—p = 5Tr(o(t,2)0" (¢, 2)5) = (b(t,z),q) = f(t,z,ult, x), 07 (L, 2)q)
(¢)  wuweC(0,T] x RY) is a viscosity solution of PDE (18) if u is sub and
super - solution of PDE (18).

Let (Q,f,IP’,]:t,Wt)tZO a Wiener process W : Q x [0,00] — R*, (t,z) €
0, T] x R,



The SDE:

X;’x p— CC, S 6 [O,t] ’ ( )
19
dXb" =b(s, X0®)ds + o(s, X5)dW, s €]t,T).
has a unique solution
Xb* e LP, (;C[0,T);RY), Vp>1.
The BSDE
( Yt = H(X;z’x)a S € _T, T]

\ Y&* = HXE") + [ fOr, X00, Y0, Z8%)dr — [T Zb%dW,, s € tT}

S

has a unique solution

(Yh*, Zzb") e LP , (Q;C[0,T);RY) x L2, (€ L? (0, T; R¥*F))



Moreover
u(t,z) = Y;tt’x

is a viscosity solution of partial differential system

~ Ou,(t, @)

— A)ui(t, ) = filt, z, ult, ), 0" (t, ) Voui(t, )),
uw(T,z) = H(x), (t,x)€[0,T] xR 1<i<n,

and
VET = (5, X00)

5 Viability

Let

K={K(t,z)=K(tz) CR": (t,z) € [0,T] x R*}.

Definition



(a) The BSDE (20) is K -viable on [0,T] if ¥V (t,x) € [0,T] x R*, VT €
t,T], H € Cpor (R, R™) such that

H(%) e K(T,%), V& e R?

it follows )
Y e K(s, X)), Vsclt,T], P—a.s.

(b) The PDE (18) is K —viable on [0,T] if VT € [0,T], ¥V H € Cpo;(R4,R™)
such that .
H(z) e K(T,z), ¥V z € R?,

Ju € Cpoi([0,T] x RER™), w(T,z) = H(z) for all = € RY, a viscosity
solution of PDE:

~ Ou,(t, o)
ot

(t,z) € [0, T[xR?% 1 <i<n, such that

o A(t)ui(ta ZL’) — fi(ta £, u(tv :IZ), o (tv Zv)vxui(tv ZC)))

~

u(t,z) € K(t,z), V(t,z) € [0,T] x R%



Remark . Since Y}* = u (s, X%) it follows that the BSDE (20) is K-
viable on [0,T] iff the PDE (18) is K —viable on [0,T].
Theorem (Viability criterion for BSDE and PDE)
Assume
(2) (t,x) — d%((t,x) (y) : [0,T] x RY — R is u.s.c.,
(41) 3 M >0, p>1 such that

A (1.29(0) < M(1 + |z[?), V(t,z) € [0,T] x R”.

Then the following assertions are equivalent:
(¢c) The BSDE (77) (and respectively the PDE (18) ) is K-viable on [0,T].
(cc) 3 C >0 such that for all 0 <t <s<T

Ao x0o) (Yo ™) < (TR d%f,x;w)(H(Xé’x)) , P—a.s.

(ccc) 3 C >0 such that V z € R™™ 4, the function h(t,z,y) = d%((t,ac) (y) s



a viscosity subsolution of PDE

oV (t,z,y)

- —L. OV (t,2,y)+(V, V(L z,y), f(t,2,y,0"(t,2)2%)) = Cdi ;) (¥),

(t,x,y) €1]0,T[ x R x R™, where

]' * 1/ x I 1
Lo(t)p () = 5 Te[o(t, )0 (1,2) [l (2,) + #* 6l (0,y) + 6l (,9) 2

*x 1

+ 200, (2,) 2] + (bt ), @l )

Corollary (Viability criterion for BSDE and PDE)
Let K(t,z) = K(t), (t,x) € [0,T] x R%. Then the following assertions are
equivalent:
(j) The BSDE (??) (and respectively the PDE (18) ) is K—viable on [0,T].
(jj) 3 C > 0 such that ¥V z € R"*4 the function V(t,y) = d%{(t)(y) is a



viscosity subsolution of PDE

oV (t
(t,y) €10, T x R",
where

A (1:2) 6ly) = 5 Trlo(t,2)o" (4,2) 2", (9)2),

1 * * >k *
5 T (ot 2)0" (1,2)2"52)+ (0, f (1,2, ,0° (1, 2)2")) < Ol (v), Y € R

Example.
Let a € C%([0,T];R?) and r € C?([0,T];R,) such that r(t) > 6 > 0,
t €[0,T). Let
K={K(t):t>0}

K(t) = B(a(t),r(t))
={zeR": |z —a(®) <r()};, t20



Then the PDE (18) ) is K-—viable on [0,T] iff V (t,x, 2) € [0,T] x R? x R***
, Vv € R"™ such that

lv|=1 and o*(t,x)z"v =0
if follows

' (t) + (v, a (8)) + (v, f(t, 2,0 (t) + 7 (1) v,07(t,2)2")) < |20 (t,2)|

— 2r(t)

or equivalent Vy € R"™ such that
y—a®)|=r@) and o*(t,z)z" (y—a(t)) =0

it follows

r () r () +(y—a(t),a (0)+y—al(t), ft,z,y,07(t,2)z")) < % |20 (t,2)]"



Thank you for your attention !



