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Periodic Unfolding Method

Cioranescu D., Damlamian A., Griso G., Periodic unfolding and homogenization, C.

R. Acad. Sci. Paris Sér. I Math. 335, (2002), 99-104.

Cioranescu D., Damlamian A., Griso G., The periodic unfolding method in homog-

enization, To appear in SIAM J. Math. Analysis, 2008.

The Periodic unfolding Method is a “fixed domain” method which is well suited to ap-

proach different classes of periodic homogenization problems.

The basic idea is that, provided the proper scale is used, oscillatory behaviours can be

turned into weak, or even strong, convergence, at the price of an increase of the space

dimension of the problem, but with significant simplifications in the proofs.

In particular, in [Cioranescu, Damlamian, Griso] the homogenization of quadratic

energies has been carried out, and it has been shown that the use of periodic unfolding



method simplifies the homogenization process by actually reducing it to a weak conver-

gence problem in L2 spaces.

It also provides an elementary proof of the results of the theory of two-scale convergence

of Nguetseng and Allaire.

The method was successfully applied to many problems (originally, to the homogenization

of linear problems in the standard periodic case, then to the one with holes).

It also applies to

- elasticity and composite materials,

- truss-like structures, as well as rods, plates and composite thereof,

- multiscale periodic homogenization.

The aim here is to present some examples approached by means of the periodic unfolding

method, in particular the homogenization of nonlinear convex or quasi-convex energies,

as well as the homogenization of pointwise gradient constrained convex energies.



The Unfolding Operator and Its Main Properties

Ω ⊆ Rn smooth bounded open set, Y reference cell (usually Y = ]0, 1[n).

For z ∈ Rn, [z] is the vector whose coordinates are the integer parts of the corresponding

ones of z.

For every ε > 0 the unfolding operator

Tε: L1(Ω) → L1(Rn × Y )

is defined by

Tε(v)(x, y) = ṽ
(
ε
[x

ε

]
+ εy

)
for every v ∈ L1(Ω), and a.e. (x, y) ∈ Rn × Y,

where ṽ is the extension of v by zero outside Ω.

Ωε =
⋃

ξ∈Zn, ε(ξ+Y )∩Ω 6=∅

ε(ξ + Y ).



Then one has

∫

Ωε×Y

Tε(v)(x, y) dx dy =
∫

Ω
v(x) dx for every v ∈ L1(Ω), and ε > 0.

Moreover,

Tε(v) → ṽ in Lp(Rn × Y ) as ε → 0, for every p ∈ [1, +∞[, and v ∈ Lp(Ω).

If if w = (w1, . . . , wn) ∈ L1(Ω)n, we set for every ε > 0

Tε(w) = (Tε(w1), . . . , Tε(wn)).

Proposition. Let p ∈ [1, +∞[, {εh} ⊆ ]0, +∞[ be strictly decreasing to 0. Let {vh} be a

sequence converging weakly in W 1,p(Ω) to some v. Then, there exist a subsequence {hk},

and some V ∈ Lp(Ω;W 1,p
per(Y )) such that

Tεhk
(∇vhk

) → ∇v + ∇yV weakly in Lp(Ω × Y )n.



Relation with the Two-Scale Convergence.

Proposition. Let p ∈ ]1, +∞[, {vh} be a bounded sequence in Lp(Ω), v ∈ Lp(Ω × Y ),

and {εh} ⊆ ]0, +∞[ be strictly decreasing to 0. Then {Tεh
(vh)} converges weakly to v in

Lp(Ω × Y ) if and only if {vh} two-scale converges to v.

{vh} two-scale converges to v if and only if

lim
h→+∞

∫

Ω
wh(x)ϕ

(
x,

x

εh

)
dx =

∫

Ω×Y

v(x, y)ϕ(x, y) dx dy

for every {εh} ⊆ ]0, +∞[ strictly decreasing to 0 and every smooth ϕ on Ω×Y Y -periodic

in the second group of variables.



Homogenization of Nonlinear Convex Energies

Cioranescu D., Damlamian A., De Arcangelis R.: Homogenization of Nonlinear

Integrals via the Periodic Unfolding Method; C. R. Acad. Sci. Paris Sér. I Math. 339,

(2004), 77-82.

Homogenization problem in the general case of nonlinear convex integral energies.

For such energies the homogenization result is well established, and goes back to [Mar-

cellini P.: Periodic Solutions and Homogenization of Non Linear Variational Problems;

Ann. Mat. Pura Appl. (4), 117, (1978), 139-152] and [Carbone L., Sbordone C.:

Some Properties of Γ-Limits of Integral Functionals; Ann. Mat. Pura Appl. (4), 122,

(1979), 1-60].

The use of periodic unfolding method simplifies the treatment of the homogenization

process, and allows the deduction of different types of limit formulas, by reducing it again

to a weak convergence problem in an appropriate Lp space.



A0 is the class of the bounded open subsets of Rn having Lipschitz boundary.

f Carathéodory energy density

(H0)





f : (x, z) ∈ Rn × Rn 7→ f(x, z) ∈ [0, +∞[
f(·, z) Lebesgue measurable, and Y -periodic for every z ∈ Rn

f(x, ·) convex for a.e. x ∈ Rn.

For p ∈ [1, +∞[, and M > 0

(H1) f(x, z) ≤ M (1 + |z|p) for a.e. x ∈ Rn, and every z ∈ Rn,

(H2) |z|p ≤ f(x, z) for a.e. x ∈ Rn, and every z ∈ Rn.

W 1,p
per(Y ) Banach space of Y -periodic functions in W 1,p

loc (Rn) endowed with the W 1,p(Y )-

norm.

fhom: z ∈ Rn 7→ inf
{∫

Y

f(y, z + ∇v(y)) dy : v ∈ W 1,p
per(Y )

}
.



Theorem. Let f satisfy (H0), and assume that (H1) holds for some p ∈ [1, +∞[. Let

Ω ∈ A0, and let {εh} ⊆ ]0, +∞[ converge to 0. Then, for every u ∈ W 1,p(Ω),

inf
{

lim inf
h→+∞

∫

Ω
f
( x

εh
, ∇uh(x)

)
dx : {uh} ⊆ W 1,p(Ω), uh ⇀ u in W 1,p(Ω)

}
=

= inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
, ∇uh(x)

)
dx : {uh} ⊆ W 1,p(Ω), uh ⇀ u in W 1,p(Ω)

}
=

= inf
{∫

Ω×Y

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(Y ))

}
.

If in addition, (H2) holds with p ∈ ]1, +∞[, then this common value equals

∫

Ω
fhom(∇u(x)) dx.



The proof is contained in the following three lemmas.

Lemma 1. Assume that f satisfies (H0). Let Ω ∈ A0, p ∈ [1, +∞[, and {εh} ⊆ ]0, +∞[

converge to 0 as h → +∞. Then, for every u ∈ W 1,p(Ω),

inf
{

lim inf
h→+∞

∫

Ω
f
( x

εh
, ∇uh(x)

)
dx : {uh} ⊆ W 1,p(Ω), uh ⇀ u in W 1,p(Ω)

}
≥

≥ inf
{∫

Ω×Y

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(Y ))

}
.

Lemma 2. Assume that f satisfies (H0), and that (H1) holds for some p ∈ [1, +∞[. Let

Ω ∈ A0, and let {εh} ⊆ ]0, +∞[ converge to 0 as h → +∞. Then, for every u ∈ W 1,p(Ω),

inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
, ∇uh(x)

)
dx : {uh} ⊆ W 1,p(Ω), uh ⇀ u in W 1,p(Ω)

}

≤ inf
{∫

Ω×Y

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(Y ))

}
.



Lemma 3. Assume that f satisfies (H0). Let Ω ∈ A0, p ∈ ]1, +∞[, and suppose that

(H1) and (H2) hold. Then, for every u ∈ W 1,p(Ω),

inf
{∫

Ω×Y

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(Y ))

}
=

∫

Ω
fhom(∇u(x)) dx.

The proof of each of these lemmas is elementary!!



Proof (of Lemma 1, easy). u ∈ W 1,p(Ω), uh ⇀ u, limh→+∞
∫
Ω f( x

εh
, ∇uh(x)) dx exists

and is finite. Then there exists {εhk
} ⊆ {εh} and U ∈ Lp(Ω; W 1,p

per(Y )) with

Tεhk
(∇uhk

) ⇀ ∇u + ∇yU in (Lp(Ω × Y ))n.

∫

Ω
f
( x

εhk

, ∇uhk
(x)

)
dx =

∫

Ωεhk
×Y

Tεhk

(
f
( ·

εhk

, ∇uhk
(·)

))
(x, y) dx dy ≥

≥
∫

Ω×Y

f
( 1

εhk

(
εhk

[ x

εhk

]
+ εhk

y
)
, Tεhk

(∇uhk
)(x, y)

)
dx dy =

=
∫

Ω×Y

f
([ x

εhk

]
+ y, Tεhk

(∇uhk
)(x, y)

)
dx dy =

∫

Ω×Y

f(y, Tεhk
(∇uhk

)(x, y)) dx dy,

where the last functional is sequentially weakly (Lp(Ω))n-lower semicontinuous (well-

known consequence of Fatou’s Lemma under hypothesis (H0)).

lim inf
h→+∞

∫

Ω
f
( x

εh
, ∇uh(x)

)
dx ≥

∫

Ω×Y

f(y, ∇u(x) + ∇yU(x, y)) dx dy ≥

≥ inf
{∫

Ω×Y

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(Y ))

}
.



Proof (of Lemma 2). u ∈ W 1,p(Ω), U ∈ C1(Rn ×Rn) with U(x, ·) Y -periodic for every

x ∈ Ω. For every h ∈N and x ∈ Ω, we set

uh(x) = u + εhU(x, x
εh

). Clearly,

∇uh(x) = ∇u(x) + εh∇xU
(
x,

x

εh

)
+ ∇yU

(
x,

x

εh

)
for every h ∈ N, x ∈ Ω.

Then, from the periodicity of U , one has
∫

Ω
f
( x

εh
, ∇uh(x)

)
dx =

∫

Ωεh
×Y

f(y,Tεh
(∇uh)(x, y)) dx dy =

=
∫

Ωεh
×Y

f
(
y, Tεh

(∇u)(x, y)+εh∇xU
(
εh

[ x

εh

]
+εhy, y

)
+∇yU

(
εh

[ x

εh

]
+εhy, y

))
dx dy.

Due to continuity properties of ∇xU and to the periodicity of ∇yU ,

εh∇xU
(
·, ·

εh

)
→ 0 uniformly in Ω,

∇yU
(
·, ·

εh

)
→

∫

Y

∇yU(·, y) dy = 0 weakly* in (L∞(Ω))n.



This implies that uh ⇀ u in W 1,p(Ω). Moreover,

inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
, ∇vh(x)

)
dx : {vh} ⊆ W 1,p(Ω), vh ⇀ u in W 1,p(Ω)

}

≤ lim sup
h→+∞

∫

Ωεh
×Y

f
(
y, Tεh

(∇u)(x, y) + εh∇xU
(
εh

[ x

εh

]
+ εhy, y

)

+∇yU
(
εh

[ x

εh

]
+ εhy, y

))
dx dy.

On the other hand, again by the continuity properties of ∇xU and of ∇yU ,

εh∇xU
(
εh

[ ·
εh

]
+ εh·, ·

)
→ 0 and

∇yU
(
εh

[ ·
εh

]
+ εh·, ·

)
→ ∇yU uniformly in Ω.

One also has Tεh
(∇u) → ∇u in (Lp(Rn × Y ))n. So we can pass to the limit and using

(H1), we get



lim
h→+∞

∫

Ωεh
×Y

f
(
y, Tεh

(∇u)(x, y) + εh∇xU
(
εh

[ x

εh

]
+ εhy, y

)
+

+∇yU
(
εh

[ x

εh

]
+ εhy, y

))
dx dy =

=
∫

Ω×Y

f(y, ∇u(x) + ∇yU(x, y)) dx dy.

We conclude the proof by a standard density argument when U ∈ Lp(Ω;W 1,p
per(Y )) (by

observing that (H0) and (H1) imply the continuity on Lp(Ω; W 1,p
per(Y )) of the right hand

side in the above inequality).



Proof (of Lemma 3).

After the two steps what we know is that the “limit” of the functional
∫
Ω f(x

ε , ∇uε) dx is

inf
{∫

Ω×Y

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(Y ))

}
.

We want to prove that this value is nothing else than
∫
Ω fp

hom(∇u(x)) dx. From the defi-

nition of fp
hom, we have

∫

Ω
fp
hom(∇u(x)) dx

= inf
{∫

Y

f(y, ∇u(x) + ∇v(y)) dy : v ∈ W 1,p
per(Y )

}
.

One inequality is straightforward, since for u in W 1,p(Ω) and V in Lp(Ω; W 1,p
per(Y )), the

following inequality holds for a.e. x ∈ Ω,

∫

Y

f(y, ∇u(x) + ∇yV (x, y)) dy ≥ fp
hom(∇u(x)).



The reverse inequality is obvious if
∫
Ω fp

hom(∇u(x)) dx = +∞. To prove it in the case

where
∫
Ω fp

hom(∇u(x)) dx < +∞, we make use of Castaing’s selection theorem.

Castaing’s theorem on measurable selections.

Let O, X be sets, and G a multifunction from O to X. A function σ: Ω → X will be said

to be a selection of G if σ(x) ∈ G(x) for every x ∈ O. The measurable selection result

below is is known as Castaing’s theorem.

Theorem. Let X be a separable metric space, (O, M) a measurable space, and G a

multifunction from O to X. Assume that for every x ∈ O, G(x) is nonempty and complete

in X. Assume moreover, that for every closed subset F of X, {x ∈ O : G(x) ∩ F 6= ∅}

belongs to M. Then G admits a M-measurable selection..



Note first, that due to (H0) and (H1), fp
hom is convex and continuous on Rn. Due to (H2)

and the Poincaré-Wirtinger Inequality, the infimum defining fp
hom(z), is achieved for every

z ∈ Rn.

This, and (H1) imply that for z ∈ Rn, Γ(z) is nonempty, and strongly closed, where Γ is

the multifunction defined by

Γ(z) .=
{

v ∈ W 1,p
per(Y ) :

∫

Y

v(y) dy = 0,

∫

Y

f(y, z + ∇v(y)) dy = fp
hom(z)

}
.

Now, by Castaing’s Theorem, Γ has a B(Rn)-measurable selection, where B(Rn) denotes

the Borel σ-algebra of Rn.

Let σ denote such a measurable selection. Fix u ∈ W 1,p(Ω). For a.e. x ∈ Ω, set

U(x) = σ(∇u(x)). Then U is L(Ω)-measurable, with values in W 1,p
per(Y ) so that

fp
hom(∇u(x)) =

∫

Y

f(y, ∇u(x) + ∇yU(x)(y)) dy for a.e. x ∈ Ω.



Integrating over Ω yields

∫

Ω×Y

f(y, ∇u(x) + ∇yU(x)(y)) dy dx < +∞,

so that by (H2), ∇yU is in (Lp(Ω×Y ))n. By the Poincaré-Wirtinger inequality, U belongs

to Lp(Ω;W 1,p
per(Y )), hence the claim

∫

Ω
fhom(∇u(x)) dx =

∫

Ω×Y

f(y, ∇u(x) + ∇yU(x)(y)) dx dy

≥ inf
{∫

Ω×Y

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(Y ))

}
.

Ingredients

Lemma 1: Periodic Unfolding, Lower Semicontinuity (convexity).

Lemma 2: Periodic Unfolding, Growth Conditions.

Lemma 3: Castaing’s Selection Theorem, Lower Semicontinuity (convexity), Coerciveness.



Homogenization of Quasiconvex Energies

Cioranescu D., Damlamian A., De Arcangelis R.: Homogenization of Quasiconvex

Integrals via the Periodic Unfolding Method, SIAM Journal of Math. Anal., Vol. 37, 5

(2006), 1435-1453.

Homogenization problem in the general case of quasiconvex integral energies, under p-

growth and coerciveness assumptions, defined on vector-valued configurations.

For such energies the homogenization result is well established, and goes back to [Braides

A.: Homogenization of Some Almost Periodic Coercive Functional; Rend. Accad. Naz.

Sci. XL Mem. Mat. 9, (1985), 313-322] and [Müller S.: Homogenization of Nonconvex

Integral Functionals and Cellular Elastic Materials; Arch. Rational Mech. Anal. 99,

(1987), 189-212].

We show how the use of periodic unfolding simplifies the treatment by reducing it again

to a weak convergence problem.



m, n ∈ N.

f Carathéodory energy density

(H0)





f : (x, z) ∈ Rn × Rnm 7→ f(x, z) ∈ [0,+∞[,
f(·, z) Lebesgue measurable and Y -periodic for every z ∈ Rnm,
f(x, ·) continuous for a.e. x ∈ Rn.

(QC) f(x, ·) is quasiconvex for a.e. x ∈ Rn.

p ∈ [1,+∞[, M > 0, a ∈ L1(Y ) Y -periodic

(H1) f(x, z) ≤ a(x) + M |z|p for a.e. x ∈ Rn, and every z ∈ Rnm,

(H2) |z|p ≤ f(x, z) for a.e. x ∈ Rn, and every z ∈ Rnm.

fhom: z ∈ Rnm 7→ lim
t→+∞

1
tn

inf
{∫

tY

f(y, z + ∇v) dy : v ∈ W 1,p
0 (tY ;Rm)

}
.



Theorem. Let f satisfy (H0) and (QC). Let p ∈ ]1, +∞[, and assume that (H1) and (H2)

hold. Then, for every {εh} ⊆ ]0,+∞[ converging to 0, Ω ∈ A0, and u in W 1,p(Ω;Rm),

inf
{

lim inf
h→+∞

∫

Ω
f
( x

εh
, ∇uh

)
dx : {uh} ⊆ W 1,p(Ω;Rm), uh → u in Lp(Ω;Rm)

}
=

= inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
, ∇uh

)
dx : {uh} ⊆ W 1,p(Ω;Rm), uh → u in Lp(Ω;Rm)

}
=

= inf
{

lim inf
h→+∞

∫

Ω
f
( x

εh
, ∇uh

)
dx : {uh} ⊆ u + W 1,p

0 (Ω;Rm), uh → u in Lp(Ω;Rm)
}

=

= inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
, ∇uh

)
dx : {uh} ⊆ u + W 1,p

0 (Ω;Rm), uh → u in Lp(Ω;Rm)
}

=

=
∫

Ω
fhom(∇u) dx.



In the vector-valued case, for u ∈ W 1,p(Ω), the quantity

lim
t→+∞

1
tn

inf
{∫

Ω×tY

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
0 (tY ;Rm))

}

plays the role of

inf
{∫

Ω×Y

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(Y ))

}
.

Therefore,

Proposition. Assume that f satisfies (H0), (QC), (H1), and (H2) for some p ∈ ]1, +∞[.

Then, for every Ω ∈ A0 and u ∈ W 1,p(Ω;Rm), the limit below exists, and

lim
t→+∞

1
tn

inf
{∫

Ω×tY

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
0 (tY ;Rm))

}
=

=
∫

Ω
fhom(∇u(x)) dx.

Proof. Passage to the limit on t after an application of Castaing’s Selection Theorem.



Various formulation for the limit energy:

lim
t→+∞

1
tn

inf
{∫

Ω×tY

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
0 (tY ;Rm))

}
=

= lim
t→+∞

inf
{∫

Ω×Y

f(ty, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
0 (Y ;Rm))

}
=

= inf
h∈N

inf
{∫

Ω×Y

f(hy, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω;W 1,p
0 (Y ;Rm))

}
.



The proof of the homogenization theorem reduces to the following lemmas.

The presence of an additional parameter complicates the computations.

Lemma 1. Assume that f satisfies (H0), (QC), (H1), and (H2) for some p ∈ [1, +∞[.

Let {εh} ⊆ ]0, +∞[ converge to 0, Ω in A0, and u in W 1,p(Ω;Rm). Then

inf
{

lim inf
h→+∞

∫

Ω
f
( x

εh
,∇u + ∇uh

)
dx : {uh} ⊆ W 1,p

0 (Ω;Rm), uh → 0 in Lp(Ω;Rm)
}

≥

≥ lim inf
h→+∞

inf
{∫

Ω×Y

f(hy, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
0 (Y ;Rm))

}
.

Lemma 2. Assume that f satisfies (H0) and (H1) for some p ∈ ]1, +∞[. Let {εh} ⊆

]0, +∞[ converge to 0, Ω in A0, and u in W 1,p(Ω;Rm). Then

inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
,∇uh

)
dx : {uh} ⊆ W 1,p(Ω;Rm), uh → u in Lp(Ω;Rm)

}
≤

≤ inf
k∈N

1
kn

inf
{∫

Ω×kY

f(y, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
per(kY ;Rm))

}
.



Proof (of Lemma 1). u ∈ W 1,p(Ω;Rm).

Parameter doubling to keep into account the asymptotic homogenization formula:

inf
{

lim inf
h→+∞

∫

Ω
f
( x

εh
,∇u + ∇uh

)
dx : {uh} ⊆ W 1,p

0 (Ω;Rm), uh → 0 in Lp(Ω;Rm)
}

≥

≥ sup
ν∈N

inf
{

lim inf
h→+∞

∫

Ω
f(νhx,∇u+∇vh) dx : {vh} ⊆ W 1,p

0 (Ω;Rm), vh → 0 in Lp(Ω;Rm)
}

.

Then, Periodic Unfolding Method coupled with the De Giorgi’s localization argument

because of the zero boundary datum constraint in the homogenization formula.

sup
ν∈N

inf
{

lim inf
h→+∞

∫

Ω
f(νhx,∇u+∇vh) dx : {vh} ⊆ W 1,p

0 (Ω;Rm), vh → 0 in Lp(Ω;Rm)
}

≥

≥ lim inf
ν→+∞

lim
h→+∞

inf
{∫

Ω×Y

f(hy,T1/ν(∇u(x))+∇yV (x, y)) dx dy :

V ∈ Lp(Ω;W 1,p
0 (Y ;Rm))

}
.



Finally, the quasiconvexity of f and the properties of the unfolding operator provide

lim inf
ν→+∞

lim
h→+∞

inf
{∫

Ω×Y

f(hy, T1/ν(∇u(x))+∇yV (x, y)) dx dy :

V ∈ Lp(Ω; W 1,p
0 (Y ;Rm))

}
≥

≥ lim inf
h→+∞

inf
{∫

Ω×Y

f(hy, ∇u(x) + ∇yV (x, y)) dx dy : V ∈ Lp(Ω; W 1,p
0 (Y ;Rm))

}
.

Proof (of Lemma 2). k ∈ N, U ∈ C1(Rn ×Rn;Rm) with U(x, ·) kY -periodic for every

x ∈ Ω.

uh(x) = u(x) + εhU(x, x
εh

).

Parameter doubling.

∫

Ω
f
( x

εh
, ∇uh

)
dx =

∫

Ωkεh
×Y

Tkεh

(
f
( ·

εh
, ∇uh(·)

))
(x, y) dx dy =



=
∫

Ωkεh
×Y

f
(
ky, Tkεh

(∇u)(x, y)+εh∇xU
(
kεh

[ x

kεh

]
+kεhy, ky

)
+

+∇yU
(
kεh

[ x

kεh

]
+kεhy, ky

))
dx dy.

As h diverges,

inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
, ∇uh

)
dx : {vh} ⊆ W 1,p(Ω;Rm), vh → u in Lp(Ω;Rm)

}
≤

≤ 1
kn

∫

Ω×kY

f(y, ∇u(x) + ∇yU(x, y)) dx dy,

for every U ∈ C1(Rn × Rn;Rm) with U(x, ·) kY -periodic for every x ∈ Ω.

A density argument, and the consideration of the infimum on k, completes the proof.



Homogenization of Pointwise Gradient Constrained Convex Energies

Cioranescu D., Damlamian A., De Arcangelis R.: Homogenization of Integrals with

Pointwise Gradient Constraints via the Periodic Unfolding Method, Ricerche di Matem-

atica, Vol. 55, 1 (2007), 31-54.

Homogenization problem in presence of pointwise oscillating gradient constraints.

Conjecture in [Bensoussan A., Lions J.L., Papanicolaou G.: “Asymptotic Analysis

for Periodic Structures”; Stud. Math. Appl. 5, North Holland (1978)], [Carbone L.,

Salerno S.: Further Results on a Problem of Homogenization with Constraints on the

Gradient; J. Analyse Math. 44, (1984/85), 1-20], [Corbo Esposito A., De Arcan-

gelis R.: Homogenization of Dirichlet Problems with Nonnegative Bounded Constraints

on the Gradient; J. Analyse Math. 64, (1994), 53-96], [Carbone L., De Arcangelis

R.: “Unbounded Functionals in the Calculus of Variations. Representation, Relaxation,

and Homogenization”; Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 125,



Chapman & Hall/CRC, Boca Raton, FL (2001)].

Measure theoretic arguments.

The Periodic Unfolding Method provides a simpler and more direct proof.

f energy density

(H0)





f : (x, z) ∈ Rn × Rn 7→ f(x, z) ∈ [0, +∞]
f L(Rn) × B(Rn)-measurable
f(·, z) Y -periodic for every z ∈ Rn, f(x, ·) convex for a.e. x ∈ Rn.

p ∈ [1,+∞], a ∈ L1
per(Y ), M ≥ 0, r > 0

(H1) f(x, z) ≤ a(x) + M |z|p for a.e. x ∈ Rn and every z ∈ domf(x, ·),

(H2) |z|p ≤ f(x, z) for a.e. x ∈ Rn and every z ∈ Rn,

(B) Br ⊆ domf(x, ·) for a.e. x ∈ Rn.



fhom: z ∈ Rn 7→ inf
{∫

Y

f(y, z + ∇v(y)) dy : v ∈ W 1,p
per(Y )

}
.

Theorem. Let p ∈ ]n, +∞[, a ∈ L1
per(Y ), M ≥ 0, r > 0, let f satisfy (H0), (H1), (H2),

(B). Then fhom is convex, lower semicontinuous, and

|z|p ≤ fhom(z) for every z ∈ Rn,

Br ⊆ domfhom.

Let Ω be a convex bounded open set, and let {εh} ⊆ ]0, +∞[ converge to 0. Then, for

every u in W 1,p(Ω),

inf
{

lim inf
h→+∞

∫

Ω
f
( x

εh
, ∇uh(x)

)
dx : {uh} ⊆ W 1,p(Ω), uh → u in C0(Ω)

}
=

= inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
, ∇uh(x)

)
dx : {uh} ⊆ W 1,p(Ω), uh → u in C0(Ω)

}
=



= inf
{∫

Ω×Y

f(y,∇u(x)+∇yV (x, y)) dx dy : V ∈ Lp(Ω;W 1,p
per(Y ))

}
=

∫

Ω
fhom(∇u(x)) dx.

As consequence, for every u ∈ W 1,p
0 (Ω),

inf
{

lim inf
h→+∞

∫

Ω
f
( x

εh
, ∇uh

)
dx : {uh} ⊆ W 1,p

0 (Ω), uh → u in C0(Ω)
}

=

= inf
{

lim sup
h→+∞

∫

Ω
f
( x

εh
, ∇uh

)
dx : {uh} ⊆ W 1,p

0 (Ω), uh → u in C0(Ω)
}

=

=
∫

Ω
fhom(∇u) dx.



As corollaries, homogenization results under the “model case” assumptions

f(x, z) ≤ a(x) for a.e. x ∈ Rn, and every z ∈ domf(x, ·),

domf(x, ·) ⊆ BR for a.e. x ∈ Rn,

where a ∈ L1
per(Y ), and R > 0.

Since f may take the value +∞, the above integrals involve pointwise gradient constrains.

Indeed, for fixed h ∈ N, the configurations v that make the integral
∫
Ω f( x

εh
, ∇v) dx finite

must satisfy the constraint ∇v(x) ∈ domf( x
εh

, ·) for a.e. x ∈ Ω. This occurs in the

“classical” elasto-plastic torsion case when f(x, z) = |z|2 + I[0,ϕ( x
εh

)](|z|), where ϕ is a

nonnegative Y -periodic function in L∞(Y ), and I[0,ϕ( x
εh

)](|z|) is the indicator function of

[0, ϕ( x
εh

)]. This corresponds to the gradient constraint |∇v(x)| ≤ ϕ( x
εh

) for a.e. x ∈ Ω.

Ingredients: Periodic unfolding method, Abstract inner regularity results (hold only for

convex open sets).


