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INTERNAL NONNEGATIVE
STABILIZATION FOR SOME
PARABOLIC EQUATIONS

Sebastian Aniţa

Abstract. We investigate the internal zero stabi-
lization for some parabolic equations with state con-
straints. We also consider a two-component Reaction-
Diffusion system posed on non coincident spatial do-
mains and featuring a reaction term involving an inte-
gral kernel. The question of global existence of com-
ponentwise nonnegative solutions is assessed. Then
we investigate the stabilization to zero of one of the
solution components via an internal control distributed
on a small subdomain while preserving nonnegativity
of both components. Our results apply to predator-
prey systems.
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1. A parabolic equation. We shall investigate the inter-
nal zero stabilization for a parabolic equation with state constraints.
Let Ω ⊂ RN , N ≥ 2, be a bounded domain and ω ⊂⊂ Ω be a nonempty
open subset, both with smooth enough boundaries ∂Ω and ∂ω, respec-
tively.

We shall study for the beginning the following problem:



yt(x, t)− divx(a(x)∇xy(x, t))
+c(x)y(x, t) = m(x)u(x, t), x ∈ Ω, t > 0,

∂νy(x, t) + α(x)y(x, t) = 0, x ∈ ∂Ω, t > 0

y(x, 0) = y0(x), x ∈ Ω,

(1)
where

m is the characteristic function of ω;
a(x) = (aij(x))i,j=1,N is a quadratic selfadjoint matrix;

aij ∈ C1(Ω), i, j ∈ {1, 2, ..., N} and
there exists a0 > 0 such that

(a(x)ζ) · ζ = aij(x)ζiζj ≥ a0|ζ|2, ∀ζ = (ζ1, ζ2, ..., ζN) ∈ RN ;

α ∈ L∞(∂Ω), α(x) ≥ 0 a.e. x ∈ ∂Ω;
c ∈ L∞(Ω).

The summation convention that repeated indices indicate summation
from 1 to N is followed here as it will be throughout.

Here, ∂νz is the conormal derivative on ∂Ω, i.e.,

∂νz(x) = (a(x)∇z(x)) · ν(x) = aij(x)νi(x)Djz(x),

where ν(x) = (ν1(x), ν2(x), ..., νN(x)) is the outward normal versor to
∂Ω at x and u is the control and acts on ω (u is an internal control).
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Remark 1. If α ≡ 0, then the boundary condition becomes ∂νy(x, t) =
0 and that means there is no heat, gas or population transfer through
the boundary ∂Ω.

The main goal of this paper is to precise if for any y0 ∈ L∞(Ω),

y0(x) ≥ 0 a.e. x ∈ Ω, there exists a control u ∈ L∞loc(ω × [0, +∞)) such

that the solution yu to (1) satisfies

yu(x, t) ≥ 0 a.e. x ∈ Ω, ∀t ≥ 0 (2)

and
lim

t→+∞
yu(t) = 0 in L∞(Ω). (3)

Definition 1. If the answer to the above mentioned question is affirma-
tive, then we say that (1) is nonnegatively stabilizable and the property
is called nonnegative stabilizability.

This is in fact null stabilizability with state constraints. In this case
it is also desirable to find a feedback control u that realizes (2) and (3).

We shall also analyze the problem of maximizing of λω,Ω
1 with respect

to some geometric properties of ω and Ω.

2. Characterization of the nonnegative sta-
bilizability for (1). For any γ > 0 we denote by λ1γ the

principal eigenvalue for the following problem:


−div(a(x)∇ϕ(x)) + cϕ(x) + γmϕ(x) = λϕ(x), x ∈ Ω

∂νϕ(x) + α(x)ϕ(x) = 0, x ∈ ∂Ω
(4)
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(here γ ∈ R). We also denote by λω,Ω
1 , the principal eigenvalue to the

following problem



−div(a(x)∇ϕ(x)) + c(x)ϕ(x) = λϕ(x), x ∈ Ω \ ω

ϕ(x) = 0, x ∈ ∂ω

∂νϕ(x) + α(x)ϕ(x) = 0, x ∈ ∂Ω.

Lemma 1.
λ1γ ↗ λω,Ω

1

as γ → +∞.

The proof is based on Rayleigh’s principle.

Theorem 1. If (1) is nonnegatively stabilizable,
then the principal eigenvalue for the above men-
tioned problem satisfies

λω,Ω
1 > 0.

Conversely, if λω,Ω
1 > 0, then (1) is nonnega-

tively stabilizable and for γ > 0 large enough, the
feedback control u := −γy realizes (2) and (3).

Proof. If (1) is nonnegatively stabilizable, then for any y0 ∈ L∞(Ω),
y0(x) ≥ 0 a.e. x ∈ Ω, there exists u ∈ L∞loc(ω × [0, +∞)) such that

yu(x, t) ≥ 0 a.e. x ∈ Ω, ∀t ≥ 0

and
lim

t→+∞
yu(t) = 0 in L∞(Ω).
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The last relation implies that

lim
t→+∞

yu(t) = 0 in L2(Ω).

Since yu ≥ 0 on ∂ω × [0, +∞), we may conclude by the comparison
principle for parabolic operators that

yu(x, t) ≥ z(x, t) ≥ 0 a.e. x ∈ Ω \ ω, ∀t ≥ 0, (5)

where z is the solution to the following problem:



zt(x, t)− divx(a(x)∇xz(x, t)) + c(x)z(x, t) = 0, x ∈ Ω \ ω, t > 0
z(x, t) = 0, x ∈ ∂ω, t > 0
∂νz(x, t) + α(x)z(x, t) = 0, x ∈ ∂Ω, t > 0
z(x, 0) = y0(x), x ∈ Ω \ ω.

By (5) we get that

lim
t→+∞

z(t) = 0 in L2(Ω \ ω)

and consequently we conclude that λω,Ω
1 > 0.

Conversely, if λω,Ω
1 > 0, then by Lemma 1 we obtain that for γ > 0

large enough we have λ1γ > 0. For such γ > 0 we consider the feedback

control u := −γy. Problem (1) becomes:



yt(x, t)− divx(a(x)∇xy(x, t)) + c(x)y(x, t)
+γm(x)y(x, t) = 0 x ∈ Ω, t > 0,

∂νy(x, t) + α(x)y(x, t) = 0, x ∈ ∂Ω, t > 0
y(x, 0) = y0(x), x ∈ Ω

(6)
and let y be the solution to (6). It is obvious that y satisfies

1

2
· d

dt
(‖y(t)‖2

L2(Ω)) + λ1γ‖y(t)‖2
L2(Ω) ≤ 0, for t ≥ 0

which implies that

‖y(t)‖2
L2(Ω) ≤ e−2λ1γt‖y0‖2

L2(Ω), ∀ t ≥ 0,
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and equivalently

‖y(t)‖L2(Ω) ≤ e−λ1γt‖y0‖L2(Ω), ∀t ≥ 0.

The parabolic L2 → L∞ inequality

‖y(t + s)‖L∞(Ω) ≤ Ct−N/4‖y(s)‖L2(Ω),

for any t > 0 small enough (where C > 0 is a constant) follows in a
standard manner and implies that

‖y(t)‖L∞(Ω) ≤ C̃e−λ1γt‖y0‖L2(Ω), ∀t ≥ 0

(where C̃ > 0 is a constant).

Remark 2. The last inequality shows the great importance of finding
the position of ω which maximizes the principal eigenvalue λω,Ω

1 . A

greater value for λω,Ω
1 leads to a greater convergence rate to zero of the

solution to (6).
In case of nonnegative stabilizability, u := −γy is a stabilizing control

for (1).

3. The derivative of λω,Ω
1 with respect to trans-

lations. We have already remarked that it is an important task to
maximize λω,Ω

1 subject to the position of ω. We shall investigate here
this problem but only subject to translations of ω. Namely, we intend
to evaluate the derivative of λω,Ω

1 with respect to translations.
Let ω̃ be a nonempty open subset of RN with smooth boundary and

consider O the set of all translations ω of ω̃ satisfying ω ⊂⊂ Ω.

For any ω ∈ O and V ∈ RN we define the derivative dλω
1 (V ):

dλω,Ω
1 (V ) = lim

ε↘0

λεV +ω,Ω
1 − λω,Ω

1

ε
.
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Theorem 2. For any ω ∈ O and
V 0 = (V 0

1 , V 0
2 , ..., V 0

N) ∈ RN we have

dλω,Ω
1 (V 0) = −

∫

∂ω

(a(x)∇ϕω(x))·∇ϕω(x)(V 0·ν(x))dσ,

where ϕω is the eigenfunction corresponding to
λω,Ω

1 and satisfying ‖ϕω‖L2(Ω\ω) = 1, ϕω(x) > 0
a.e. x ∈ Ω \ ω and ν(x) is the normal outward
versor at x ∈ ∂ω (outward with respect to Ω \ ω).

The proof follows in a standard manner.

4. Evaluations of λω,Ω
1 . It is obvious that in view of stabiliz-

ing parabolic equations it is of great importance to maximize λω,Ω
1 with

respect to the position of ω and to the shape of Ω. We will investigate

some of these aspects for the particular case when:



a(x) = IN , ∀x ∈ Ω
α ≡ 0
c ≡ 0.

So, λω,Ω
1 is the principal eigenvalue for the following problem




−∆ϕ(x) = λϕ(x), x ∈ Ω \ ω
ϕ(x) = 0, x ∈ ∂ω
∂ϕ

∂ν
(x) = 0, x ∈ ∂Ω.

(7)
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Theorem 3. Assume that ϕ∗ is an eigenfunction
for (7) corresponding to λω,Ω

1 , that satisfies in ad-
dition: {

0 < ϕ∗(x) < M, ∀x ∈ Ω \ ω
ϕ∗(x) = M, ∀x ∈ ∂Ω,

(8)

where M > 0 is a constant. Then we have that

λω,Ω
1 > λω,Ω̃

1 ,

for any domain Ω̃ ⊂ RN with smooth boundary
and such that ω ⊂⊂ Ω̃, meas(Ω̃) = meas(Ω) and
Ω̃ 6= Ω.

Remark 3. If ω and Ω are balls with the same center, then such a
function exists.

Proof. It is obvious that λω,Ω
1 > 0. Let Ω̃ ⊂ RN be a domain with

smooth boundary such that ω ⊂⊂ Ω̃, Ω̃ 6= Ω and meas(Ω̃) = meas(Ω).

Due to Rayleigh’s principle we have

λω,Ω
1 = Min{

∫

Ω\ω
|∇ϕ|2dx; ϕ ∈ H1(Ω\ω), ‖ϕ‖L2(Ω\ω) = 1, ϕ = 0

on ∂ω}
and this minimum is attained for ϕ∗. Consider the function ϕ̃ given

by

ϕ̃(x) =

{
ϕ∗(x), x ∈ Ω ∩ Ω̃ \ ω

M, x ∈ Ω̃ \ Ω.

This yields
ϕ̃ ∈ H1(Ω̃ \ ω) and ϕ̃ = 0 on ∂ω.

On the other hand we have

‖ϕ̃‖L2(Ω̃\ω) > ‖ϕ∗‖L2(Ω\ω)
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and
‖∇ϕ̃‖L2(Ω̃\ω) ≤ ‖∇ϕ∗‖L2(Ω\ω).

This inequality yields:∫
Ω̃\ω |∇ϕ̃|2dx∫
Ω\ω |ϕ̃|2dx

<

∫
Ω\ω |∇ϕ∗|2dx∫
Ω\ω |ϕ∗|2dx

= λω,Ω
1 .

Using once again Rayleigh’s principle we get that

λω,Ω̃
1 < λω,Ω

1 .

Remark 4. If there exists ϕ∗ an eigenfunction of (7) corresponding to

λω,Ω
1 and satisfying (8), then we may conclude that

λω,Ω
1 = Max {λω,Ω̃

1 ; Ω̃ ⊂ RN is a domain with smooth boundary and

satisfying ω ⊂⊂ Ω̃, meas(Ω̃) = meas(Ω)}
= Max {λω̃,Ω

1 ; ω̃ ⊂⊂ Ω is an isometric transform of ω}.

Remark 5. If ω is a ball ω ⊂⊂ Ω, then we may conclude by Theorem
3 that

λω,Ω
1 ≤ λω,B

1 ,

where B is a ball such that

meas(B) = meas(Ω)

and
B and ω have the same center.

Moreover, we have equality only for Ω = B and we conclude that the
maximal value for λω,Ω

1 , subject to all domains Ω ⊂ RN with smooth
boundary and satisfying ω ⊂⊂ Ω and meas(Ω) = L, is attained for the
ball B of measure L and with the same center as ω.

It is possible to prove that the following Poincaré inequality holds:

∫

Ω\ω
|ϕ(x)|2dx ≤ γ

∫

Ω\ω
|∇ϕ(x)|2dx, (9)
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∀ϕ ∈ H1(Ω\ω) with ϕ = 0 on ∂ω (here γ > 0 is a constant independent
of ϕ).
Relation (9) implies that

1

γ
≤

∫
Ω\ω |∇ϕ|2dx∫
Ω\ω |ϕ|2dx

,

∀ϕ ∈ H1(Ω \ ω) such that ϕ 6= 0L2(Ω\ω), ϕ = 0 on ∂ω, and this implies

that
1

γ
≤ λω,Ω

1 .

It is important to notice that γ depends on the “distance” between
ω and ∂Ω. If this “distance” is small, then γ is small and 1

γ and λω,Ω
1

are large.
So, if we wish to find a position of ω for which λω,Ω

1 to be great, then
it is important to find a position of ω ⊂⊂ Ω for which the “distance”
between ω and ∂Ω to be small.

Remark 6. In practice it is important to precise how “close” to ∂Ω

should we take ω in order to obtain a desired value δ > 0 for the prin-

cipal eigenvalue for (7). For this reason we may consider the following

Cauchy problem:



−∆ϕ(x) = δϕ(x)
ϕ(x) = 1, x ∈ ∂Ω
∂ϕ

∂ν
(x) = 0, x ∈ ∂Ω

(which has of course a local solution, which in addition satisfies ϕ(x) <
1, ∀x /∈ ∂Ω).

If there exists ω ⊂⊂ Ω such that ϕ(x) = 0 on ∂ω, then it follows by
the maximum principle for elliptic operators that ϕ(x) > 0, ∀x ∈ Ω \ω
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(if Ω is a ball, then for any δ > 0 such a set ω exists and is a ball with
the same center as Ω).

In conclusion, if such an ω exists, then λω,Ω
1 = δ and for any Ω̃

satisfying ω ⊂⊂ Ω̃ and meas(Ω̃) = meas(Ω), we have

λω,Ω̃
1 ≤ δ.

Remark 7. If there exists a ball β such that ω ⊂
η ⊂⊂ Ω, then by Rayleigh’s principle we get that

λω,Ω
1 ≤ λη,Ω

1 .

By Remark 4 we have that

λη,Ω
1 ≤ λη,B

1 ,

where B is the ball with the same center as η and
meas(B) = meas(Ω). So, we have that

λω,Ω
1 ≤ λη,B

1 .

This gives an upper bound for λω,Ω
1 .

5. A predator-prey system. Let h(·, t) be the spatial
density at time t of a prey species distributed over a spatial domain
Ωh in RN , N = 1, 2 or 3, and assume its spatio-temporal dynamics is
governed by a basic logistic model:

∂th− d1∆h = rh− kh2, x ∈ Ωh, t > 0,

wherein r > 0 is the natural growth rate and k > 0 is a density depen-

dent effect on mortality due to intraspecific competition within prey.
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Let p(·, t) be the spatial density at time t of a predator species dis-

tributed over a spatial domain Ωp in RN , with Ωh ∩Ωp 6= ∅; in absence

of the aforementioned prey – assumed to be its unique resource – the

predator population will decay at an exponential rate a > 0 and its

spatio-temporal dynamics is governed by a basic linear model,

∂tp− d2∆p = −ap, x ∈ Ωp, t > 0.

When both populations are present predation occurs on Ωh ∩ Ωp; let

us denote by f(h, p) a suitable functional response to predation. The

prey dynamics is modified by predation and reads

∂th− d1∆h = rh− kh2 − χ(x)f (h, p)p, (10)

x ∈ Ωh, t > 0, wherein χ is the characteristic function of Ωh∩Ωp. Prey
captured and eaten at time t > 0 and location x′ ∈ Ωh ∩ Ωp are trans-
formed into biomass via a conversion factor δ > 0 yielding a numerical
response to predation δf(h(x′, t), p(x′, t))p(x′, t). We assume that this
quantity is distributed over Ωp via a generic nonnegative kernel `(x, x′)
so that δ`(x, x′)f(h(x′, t), p(x′, t))p(x′, t) is the biomass distributed at
x ∈ Ωp resulting from predation at x′ ∈ Ωh ∩Ωp. Biomass conservation

implies a consistency condition must hold,

∫

Ωp

`(x, x′)dx = 1 for each

x′ ∈ Ωh ∩ Ωp. It is also obvious that `(x, x′) = 0 for each x′ ∈ Ωp \ Ωh.
In this setting the predator dynamics reads
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∂tp−d2∆p = −ap+δ

∫

Ωp

χ(x′)`(x, x′)f (h, p)(x′, t)p(x′, t) dx′,

(11)

x ∈ Ωp, t > 0. In applications we have in mind the functional re-
sponse to predation may take several standard parametric forms, such

as Lotka-Volterra, f(h, p) = ρh, Holling type k + 1, f(h, p) =
ρhk

1 + qhk
,

or Beddington-De Angelis, f(h, p) =
ρh

1 + qh + sp
(with ρ, q, s > 0).

To complete our model boundary conditions must be imposed to both
species. We choose no-flux boundary conditions corresponding to iso-
lated populations:

∂ηh(x, t) = ∇h(x, t) · ηh(x) = 0, x ∈ ∂Ωh, t > 0,
where ηh(x) denotes a unit normal vector to ∂Ωh at x ∈ ∂Ωh,

∂ηp(x, t) = ∇p(x, t) · ηp(x) = 0, x ∈ ∂Ωp, t > 0,
where ηp(x) denotes a unit normal vector to ∂Ωp at x ∈ ∂Ωp.

(12)

Last nonnegative and bounded initial conditions are prescribed at
time t = 0:

h(x, 0) = h0(x) ≥ 0, x ∈ Ωh,

p(x, 0) = p0(x) ≥ 0, x ∈ Ωp.
(13)

Then (10)-(11)-(12) and (13) is a basic model for our predator-prey
system.

Going back to control problems two strategies are devised and inves-

tigated.

In order to directly control the predator species one may select an open

subdomain, ω with ω ⊂ Ωp, and introduce a control, u, harvesting /
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culling predators from ω. Let m be the characteristic function of ω.

Equation (11) is modified into

∂tp− d2∆p = −ap + δ

∫

Ωp

χ(x′)`(x, x′)f (h, p)(x′, t)p(x′, t) dx′

+m(x)u(x, t),
(14)

for x ∈ Ωp and t > 0. A first question to address reads: “is-it possible

to find such a control u so that the solution (h, p) of (10)-(14)-(12) and

(13) remains componentwise nonnegative and satisfies p(·, t) → 0 as

t → +∞ ?”

A second strategy consists in selecting an open subdomain ω with ω ⊂
Ωh, and introduce a control, v, harvesting prey from ω and reducing its

population, size. Equation (10) now reads

∂th− d1∆h = rh− kh2 − χ(x)f (h, p)p + m(x)v(x, t), (15)

x ∈ Ωh, t > 0, where m is the characteristic function of ω. A second
question to address is: “is-it possible to find such a control v so that the
solution (h, p) of (15)-(11)-(12) and (13) remains componentwise non-
negative and satisfies p(·, t) → 0 as t → +∞ (and if possible h(·, t) 6→ 0
as t → +∞) ?”
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6. Global existence results and stabilization
in a control free setting.
6.1. Main notations and assumptions.

(H1) : ω and Ωs, s := h, p are nonempty bounded domains in RN ,
N ≥ 1, with smooth boundaries ∂ω and ∂Ωs, respectively, so that
locally each ω, Ωs lies on one side of ∂ω and ∂Ωs, respectively; ηs(x)
is a unit normal vector to ∂Ωs at x.
Let χ be the characteristic function of the set Ωh ∩ Ωp.

(H2) : All coefficients – d1, r, k, d2, a and δ – are positive constants.
Next ` : Ωp×Ωp → [0, +∞) is a measurable and bounded function
satisfying ∫

Ωp

`(x, x′)dx = 1, x′ ∈ Ωh,

`(x, x′) = 0 a.e. in Ωp × (Ωp \ Ωh).

(16)

Last f : [0, +∞) × [0, +∞) → [0, +∞) is locally Lipschitz contin-
uous, h 7→ f(h, p) being nondecreasing on [0, +∞) for any p ≥ 0,
p 7→ f(h, p) being nonincreasing on [0, +∞) for any h ≥ 0; f(0, p) =
0, ∀p ∈ [0, +∞) and f(h, 0) > 0, ∀h ∈ (0, +∞).

(H3) : h0 ∈ C(Ωh) and p0 ∈ C(Ωp) are nonnegative;
‖h0‖L∞(Ωh) > 0, ‖p0‖L∞(Ωp) > 0.

Set

K∗ = max(K, ‖h0‖L∞(Ωh)), where K =
r

k
,

M ∗ = ‖`‖L∞(Ωp×Ωp)f(K∗, 0) max
(
‖p0‖L1(Ωp) + δ‖h0‖L1(Ωh),

δr

a
K∗|Ωh|

)
,

wherein |Ω| is the N -dimensional Lebesgue measure of Ω ⊂ RN .

6.2. Existence results.

∂th− d1∆h = rh− kh2−χ(x)f (h, p)p−mh(x)h(x, t), (17)
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x ∈ Ωh, t > 0 and

∂tp− d2∆p = −ap + δ

∫

Ωp

χ(x′)`(x, x′)f (h, p)(x′, t)p(x′, t) dx′

−mp(x)p(x, t),
(18)

for x ∈ Ωp and t > 0, together with the boundary and initial conditions
in (12)-(13).

Theorem 4. Let mh ∈ L∞(Ωh) and mp ∈ L∞(Ωp) be nonnegative.
Then problem (17)-(18)-(12) and (13) has a unique componentwise
nonnegative and global strong solution. Moreover

0 ≤ h(x, t) ≤ K∗, x ∈ Ωh, t > 0,

0 ≤ p(x, t) ≤ max(‖p0‖L∞(Ωp),
δM ∗

a
), x ∈ Ωp, t > 0.

(19)

6.3. A threshold for predator extinction with-
out control. Concerning predator extinction in the original sys-

tem one gets

Proposition 1. Let λp
1 be the principal eigenvalue

of the problem
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−d2∆ψ + aψ − δ

∫

Ωp

χ(x′)`(x, x′)f (K, 0)ψ(x′) dx′ = λψ,

x ∈ Ωp,

∂ηψ(x) = 0, x ∈ ∂Ωp.

Let (h, p) be a strong solution to (10)-(11)-(12)
and (13). Then

(i): when λp
1 > 0, then lim

t→+∞
p(·, t) = 0 in L∞(Ωp)

and lim
t→+∞

h(·, t) = K in L∞(Ωh);

(ii): when lim
t→+∞

p(·, t) = 0 in L∞(Ωp), then λp
1 ≥

0 and lim
t→+∞

h(·, t) = K in L∞(Ωh).

7. The p-zero stabilization of the predator
population. Assume in addition that ω ⊂ Ωp and Ωp \ ω is a
domain and let m be the characteristic function of ω.

Let λω,p
1 ∈ R be the principal eigenvalue for the elliptic problem:
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−d2∆ψ(x) + aψ(x)− δf (K, 0)

∫

Ωp\ω
χ(x′)`(x, x′)ψ(x′)dx′

= λψ(x), x ∈ Ωp \ ω,
ψ(x) = 0, x ∈ ∂ω
∂ηψ(x) = 0, x ∈ ∂Ωp.

(20)

Given γ ≥ 0, let λω,p
1γ ∈ R be the principal eigenvalue for the elliptic

problem:





−d2∆ψ(x) + aψ(x)− δf (K, 0)

∫

Ωp

χ(x′)`(x, x′)ψ(x′)dx′

+m(x)γψ(x) = λψ(x), x ∈ Ωp,
∂ηψ(x) = 0, x ∈ ∂Ωp.

(21)

The existence of both λω,p
1 and (λω,p

1γ )γ≥0 follow from the assertions in
the last section.

Lemma 2. The mapping γ 7→ λω,p
1γ is increasing and continuous; in

addition

lim
γ→+∞

λω,p
1γ = λω,p

1 .

Definition 2. The predator population is p-zero stabilizable if for any
(h0, p0) satisfying (H3), there exists a control u ∈ L∞loc(ω × [0, +∞))
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such that the solution (h, p) to (10)-(14)-(12) and (13) satisfies{
h(x, t) ≥ 0 a.e. x ∈ Ωh, ∀t ≥ 0
p(x, t) ≥ 0 a.e. x ∈ Ωp, ∀t ≥ 0

(22)

and

lim
t→+∞

p(·, t) = 0 in L∞(Ωp). (23)

Hence “p-zero stabilizable” means that the zero stabilizability holds
for controls acting only on the predator population.

We now state the main result of this section:

Theorem 5. If the predator population is p-zero
stabilizable then λω,p

1 ≥ 0.
Conversely, when λω,p

1 > 0 the predator popula-
tion is p-zero stabilizable and for γ large enough
the feedback control u := −γp realizes (22) and
(23), where (h,p) is the solution to (10)-(14)-(12)-
(13), corresponding to u := −γp.

Remark 8. This yields λω,p
1 > λp

1 (the proof follows
in the same manner). Theorem 5 implies that even
when λp

1 ≤ 0, p-zero stabilizability holds as soon as
λω,p

1 > 0.

Remark 9. When ε → 0+ and γ → +∞ we have
λω,p

1γ (ε) → λω,p
1 . This shows the importance of maxi-

mizing λω,p
1 with respect to the position and geometry

of ω.
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8. The h-zero stabilization of the predator
population. Assume in addition that ω ⊂ Ωh and Ωh \ ω is a
domain and let m be the characteristic function of ω.

Definition 3. The predator population is h-zero stabilizable if for any
(h0, p0) satisfying (H3) there exists a v ∈ L∞loc(ω × [0, +∞)) such that
the solution (h, p) to (15)-(11)-(12) and (13) remains componentwise
nonnegative, cf. (22), and satisfies (23).

“h-zero stabilizable” means that the zero-stabilizability holds for con-
trols acting only on the prey population.

Given any γ > 0 let (hγ, pγ) be the nonnegative solution to





∂th− d1∆h = rh− kh2 − χ(x)f (h, p)p−m(x)γh,
x ∈ Ωh, t > 0,

∂tp− d2∆p = −ap + δ

∫

Ωp

χ(x′)`(x, x′)f (h, p)(x′, t)p(x′, t)dx′,

x ∈ Ωp, t > 0,
∂ηh(x, t) = 0, x ∈ ∂Ωh, t > 0,
∂ηp(x, t) = 0, x ∈ ∂Ωp, t > 0,
h(x, 0) = h0(x), x ∈ Ωh,
p(x, 0) = p0(x), x ∈ Ωp.

(24)

Let now µω,h
1 be the principal eigenvalue to the elliptic problem:
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−d1∆ϕ− rϕ = µϕ, x ∈ Ωh \ ω,
ϕ(x) = 0, x ∈ ∂ω,
∂ηϕ(x) = 0, x ∈ ∂Ωh.

Proposition 2. Assume that µω,h
1 > 0. Then

for large γ any solution (hγ, pγ) to (24) satisfies
hγ(·, t) → 0 in L∞(Ωh) and pγ(·, t) → 0 in L∞(Ωp)
as t → +∞.

Remark 10. When µω,h
1 > 0, using the feedback

control v := −γh – for γ ≥ 0 large enough – one gets
extinction for both populations and limt→+∞ p(·, t) =
0 in L2(Ωp) and in L∞(Ωp) at an at least exponential
rate.

For any γ > 0 let µω,h
1γ be the principal eigenvalue to the elliptic

problem:




−d1∆ϕ(x)− rϕ(x) + m(x)γϕ(x) = µϕ(x), x ∈ Ωh

∂ηϕ(x) = 0, x ∈ ∂Ωh.
(25)
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We now look for h-stabilization conditions preserving the prey pop-

ulation to the expanse of a suitable depletion in spatial density.

For any γ > 0 let again µω,h
1γ be the principal eigenvalue to the ellip-

tic problem (25). The mapping γ 7→ µω,h
1γ is increasing, continuous on

[0, +∞) and satisfies µω,h
10 = −r < 0 and limγ→+∞ µω,h

1γ = µω,h
1 . It fol-

lows that there exists a nonnegative γ̃ ≥ 0 – that can possibly be +∞
– such that

µω,h
1γ > 0, for γ > γ̃ (if γ̃ < +∞)

µω,h
1γ < 0, for 0 ≤ γ < γ̃.

Let us now choose both ω and γ such that µω,h
1γ < 0, that is 0 ≤ γ < γ̃.

Let Kγ be the unique nontrivial and nonnegative solution, 0 < Kγ(x) ≤
K for x ∈ Ωh, to the following semilinear boundary value problem

{ −d1∆Kγ = rKγ − kK2
γ −m(x)γKγ in Ωh,

∂ηKγ = 0 in ∂Ωh.

Such a solution Kγ exists and is unique provided µω,h
1γ < 0.

Last, let νω,γ
1 be the principal eigenvalue of the problem





−d2∆ψ + aψ − δ

∫

Ωp

χ(x′)`(x, x′)f (Kγ(x
′), 0)ψ(x′)dx′ = λψ

in Ωp,

∂ηψ = 0 in ∂Ωp.
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Theorem 6. Let ω and γ be such that µω,h
1γ < 0.

Then the predator population is h-zero stabiliz-
able and the feedback control v := −γh realizes
(22) and (23), where (h,p) is the solution to (24).
Moreover lim

t→+∞
h(·, t) = Kγ in L∞(Ωh).

9. Final comments. The analysis of the first stabilizing strat-
egy shows the importance of finding the position and the geometry of
ω that maximizes λω,p

1 .

As concern the second strategy, we begin by emphasizing that the
mapping γ 7→ µω,h

1γ is increasing and continuous on [0, +∞) and µω,h
10 =

−r < 0 and limγ→+∞ µω,h
1γ = µω,h

1 .
It is possible to prove that the mapping γ 7→ Kγ is nonincreasing and

continuous from [0, +∞) to L∞(Ωh). This implies that the mapping
γ 7→ νω,γ

1 is nondecreasing and continuous on [0, +∞) and νω,0
1 = λp

1.
The results concerning the second stabilizing strategy show the im-

portance of finding the position and the geometry of ω for which exists
a γ ≥ 0 such that µω,h

1γ < 0 and νω,γ
1 > 0.

The idea is here to reduce the density of prey via a harvesting process
in ω (with a constant harvesting effort γ) up to a level that cannot
sustain anymore the predator population but assures the persistence of
preys.

It is important to notice that we could combine both strategies: we
could harvest the prey population in the subdomain ω1 (with a con-
stant harvesting effort γ1) and harvest the predator population in the
subdomain ω2 (with a harvesting effort γ2). This way it is possible to
stabilize the predator population to 0 even in situations when the pre-
vious two strategies fail. Similar stabilizability results can be obtained.
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Remark that in case of stabilizability of the predator population (in
all situations), the stabilizing controls are simple (of feedback type);
they are in fact constant harvesting efforts.

10. Some auxiliary results. Let Ω ⊂ RN be a bounded

domain with a smooth boundary ∂Ω and let η be a unit normal vector

to ∂Ω along Ω. Let α ∈ L∞(Ω) and F ∈ L∞(Ω × Ω) be such that

F (x, x′) ≥ 0 a.e. in Ω× Ω and let ζ ∈ R satisfy

ζ > ‖F‖L2(Ω×Ω) + ‖α‖L∞(Ω).

Lax-Milgram’s Lemma yields that for any g ∈ L2(Ω) there exists a
unique T g ∈ H1(Ω), a solution to





−∆ψ(x) + α(x)ψ(x)−
∫

Ω

F (x, x′)ψ(x′)dx′ + ζψ(x) = g(x),

x ∈ Ω,
∂ηψ(x) = 0, x ∈ ∂Ω.

(26)

Then, T : L2(Ω) → L2(Ω) is a linear compact operator, with pos-

itive spectral radius ρ(T ) and satisfies T (K) ⊂ K, where K = {ψ ∈
L2(Ω); ψ(x) ≥ 0 a.e. in Ω}.
Since K is a solid – closed and convex – cone, Krein-Rutman’s Theorem,

yields that the spectral radius ρ(T ) of T is an eigenvalue of T with an

eigenvector ψ̃ ∈ K \ {0}, T ψ̃ = ρ(T )ψ̃. Moreover, ρ(T ∗) = ρ(T ) is an

eigenvalue of the adjoint operator T ∗ with an eigenvector ψ̃∗ ∈ K\{0}.
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As a consequence λ1 =
1

ρ(T )
−ζ is an eigenvalue for the elliptic problem




−∆ψ(x) + α(x)ψ(x)−

∫

Ω

F (x, x′)ψ(x′)dx′ = λψ(x), x ∈ Ω,

∂ηψ(x) = 0, x ∈ ∂Ω,
(27)

with ψ̃ as a corresponding nonnegative eigenfunction, and λ1 is also an
eigenvalue for the adjoint problem





−∆ψ∗(x) + α(x)ψ∗(x)−
∫

Ω

F (x′, x)ψ∗(x′)dx′ = λψ∗(x),

x ∈ Ω,
∂ηψ

∗(x) = 0, x ∈ ∂Ω,

(28)

Let us now check that when g ∈ K \ {0}, then ψ = T g ∈ Int(K).
Indeed, when g ∈ L2(Ω), g(x) ≥ 0 a.e. Ω, g 6≡ 0, and ψ(x) ≥ 0
a.e. in Ω , ψ 6≡ 0, it follows from the strong maximum principle for
elliptic operators that ψ = T g the solution to (26) is positive in Ω and
ψ ∈ Int(K).

A consequence of Krein-Rutman’s Theorem says that λ1 is a simple
eigenvalue for (27) and (28) and that there is no other eigenvalue with
positive eigenfunctions.

λ1 is called the principal eigenvalue for (27), and for (28) as well.
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Using an approximating technique one may conclude that similar re-

sults hold for the principal eigenvalue and corresponding eigenfunctions

for





−∆ψ(x) + α(x)ψ(x)−
∫

Ω

F (x, x′)ψ(x′)dx′ = λψ(x), x ∈ Ω,

ψ(x) = 0, x ∈ Γ,
∂ηψ(x) = 0, x ∈ ∂Ω \ Γ,

(29)

wherein Γ is a measurable subset of ∂Ω.

We shall establish now a comparison result.
Set V = {q ∈ H1(Ω); q = 0 on Γ}. Let pi ∈ C([0, T ]; L2(Ω)) ∩
C((0, T ]; V ) ∩C1((0, T ]; L2(Ω)) (i = 1, 2) for any T ∈ (0, +∞) be solu-
tions to





∂tpi − d∆pi = −api +

∫

Ω

Fi(x, x′)pi(x
′, t)dx′, x ∈ Ω, t > 0,

pi(x, t) = ζi(x), x ∈ Γ, t > 0,
∂ηpi(x, t) = 0, x ∈ ∂Ω \ Γ, t > 0,
pi(x, 0) = p0i(x), x ∈ Ω,

where d > 0 and a > 0 (when such solutions exist).

Lemma 3. (A comparison result) Assume in
addition that for i = 1, 2: p0i ∈ L∞(Ω), ζi ∈
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L∞(∂Ω), Fi ∈ L∞(Ω× Ω) and



0 ≤ p01(x) ≤ p02(x) a.e. x ∈ Ω,
0 ≤ ζ1(x) ≤ ζ2(x) a.e. x ∈ Γ,
0 ≤ F1(x, x′) ≤ F2(x, x′) a.e. (x, x′) ∈ Ω× Ω.

Then 0 ≤ p1(x, t) ≤ p2(x, t) a.e. x ∈ Ω, ∀t ≥ 0.

We may now pass to a second auxiliary result. Let αn ∈ L∞(Ω),
Fn ∈ L∞(Ω× Ω) (n ∈ N) such that

Fn(x, x′) ≥ 0 a.e. in Ω× Ω.

Denote by λ1n the principal eigenvalue for





−∆ψ(x) + αnψ(x)−
∫

Ω

Fn(x, x′)ψ(x′)dx′ = λψ(x), x ∈ Ω

ψ(x) = 0, x ∈ Γ
∂ηψ(x) = 0, x ∈ ∂Ω \ Γ

and by ψn its positive eigenfunction satisfying ‖ψn‖L2(Ω) = 1.

Theorem 7. (An approximating result) As-
sume in addition that

Fn → F in L∞(Ω× Ω),
αn → α in L∞(Ω),

as n → +∞; then

λ1n → λ1,

ψn → ψ̃ in L2(Ω),
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as n → +∞, where λ1 is the principal eigenvalue
to (29) and ψ̃ is the positive eigenfunction corre-
sponding to λ1 and satisfying ‖ψ̃‖L2(Ω) = 1).


